Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Boat on the Isis

Dr Marko von der Leyen

Postdoctoral Researcher

Research theme

  • Accelerator physics
  • Plasma physics

Sub department

  • Atomic and Laser Physics

Research groups

  • Laser fusion and extreme field physics
  • Oxford Centre for High Energy Density Science (OxCHEDS)
marko.vonderleyen@physics.ox.ac.uk
Clarendon Laboratory, room 244
  • About
  • Publications

Wakefields in a cluster plasma

Physical Review Special Topics: Accelerators and Beams American Physical Society 22:11 (2019) 113501

Authors:

M Mayr, L Ceurvorst, M Kasim, J Sadler, B Spiers, K Glize, A Savin, N Bourgeois, F Keeble, A Ross, D Symes, R Aboushelbaya, R Fonseca, J Holloway, N Ratan, R Trines, R Wang, R Bingham, P Burrows, M Wing, R Pattathil, Peter Norreys

Abstract:

We report the first comprehensive study of large amplitude Langmuir waves in a plasma of nanometer-scale clusters. Using an oblique angle single-shot frequency domain holography diagnostic, the shape of these wakefields is captured for the first time. The wavefronts are observed to curve backwards, in contrast to the forwards curvature of wakefields in uniform plasma. Due to the expansion of the clusters, the first wakefield period is longer than those trailing it. The features of the data are well described by fully relativistic two-dimensional particle-in-cell simulations and by a quasianalytic solution for a one-dimensional, nonlinear wakefield in a cluster plasma.
More details from the publisher
Details from ORA
More details

Orbital angular momentum coupling in elastic photon-photon scattering

Physical Review Letters American Physical Society 123:11 (2019) 113604

Authors:

R Aboushelbaya, K Glize, A Savin, M Mayr, B Spiers, R Wang, J Collier, M Marklund, R Trines, R Bingham, Peter Norreys

Abstract:

In this Letter, we investigate the effect of orbital angular momentum (OAM) on elastic photon-photon scattering in a vacuum for the first time. We define exact solutions to the vacuum electromagnetic wave equation which carry OAM. Using those, the expected coupling between three initial waves is derived in the framework of an effective field theory based on the Euler-Heisenberg Lagrangian and shows that OAM adds a signature to the generated photons thereby greatly improving the signal-to-noise ratio. This forms the basis for a proposed high-power laser experiment utilizing quantum optics techniques to filter the generated photons based on their OAM state.
More details from the publisher
Details from ORA
More details
More details
Details from ArXiV

Energy absorption in the laser-QED regime

Scientific Reports Springer Nature 9 (2019) 8956

Authors:

Alex Savin, Aimee Ross, Ramy Aboushelbaya, Marko Mayr, Ben Spiers, Robin Wang, Peter Norreys

Abstract:

A theoretical and numerical investigation of non-ponderomotive absorption at laser intensities relevant to quantum electrodynamics is presented. It is predicted that there is a regime change in the dependence of fast electron energy on incident laser energy that coincides with the onset of pair production via the Breit-Wheeler process. This prediction is numerically verified via an extensive campaign of QED-inclusive particle-in-cell simulations. The dramatic nature of the power law shift leads to the conclusion that this process is a candidate for an unambiguous signature that future experiments on multi-petawatt laser facilities have truly entered the QED regime.
More details from the publisher
Details from ORA
More details
More details
Details from ArXiV

Advantages to a diverging Raman amplifier

Communications Physics Nature Publishing Group 1 (2018) 19

Authors:

James Sadler, LO Silva, RA Fonseca, K Glize, Muhammad Kasim, Alex Savin, Ramy Aboushelbaya, Marko Mayr, Benjamin Spiers, Robin H-W Wang, R Bingham, RMGM Trines, Peter Norreys

Abstract:

The plasma Raman instability can efficiently compress a nanosecond long high power laser pulse to sub-picosecond duration. Although many authors envisaged a converging beam geometry for Raman amplification, here we propose the exact opposite geometry; the amplification should start at the intense focus of the seed. We generalise the coupled laser envelope equations to include this non-collimated case. The new geometry completely eradicates the usual trailing secondary peaks of the output pulse, which typically lower the efficiency by half. It also reduces, by orders of magnitude, the initial seed pulse energy required for efficient operation. As in the collimated case, the evolution is self-similar, although the temporal pulse envelope is different. A two-dimensional particle-in-cell simulation demonstrates efficient amplification of a diverging seed with only 0:3mJ energy. The pulse has no secondary peaks and almost constant intensity as it amplifies and diverges.
More details from the publisher
Details from ORA
More details

Kinetic simulations of fusion ignition with hot-spot ablator mix

Physical Review E American Physical Society

Authors:

James Sadler, Y Lu, B Spiers, Marko Mayr, Alex Savin, Robin Wang, TRamy Aboushelbaya, K Glize, R Bingham, H Li, K Flippo, Peter Norreys

Abstract:

Inertial confinement fusion fuel suffers increased X-ray radiation losses when carbon from the capsule ablator mixes into the hot-spot. Here we present one and two-dimensional ion VlasovFokker-Planck simulations that resolve hot-spot self heating in the presence a localised spike of carbon mix, totalling 1.9 % of the hot-spot mass. The mix region cools and contracts over tens of picoseconds, increasing its alpha particle stopping power and radiative losses. This makes a localised mix region more severe than an equal amount of uniformly distributed mix. There is also a purely kinetic effect that reduces fusion reactivity by several percent, since faster ions in the tail of the distribution are absorbed by the mix region. Radiative cooling and contraction of the spike induces fluid motion, causing neutron spectrum broadening. This artificially increases the inferred experimental ion temperatures and gives line of sight variations.
More details from the publisher
Details from ORA
More details
More details

Pagination

  • First page First
  • Previous page Prev
  • Page 1
  • Page 2
  • Page 3
  • Current page 4

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet