Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
  • Support
Menu
CMP
Credit: Jack Hobhouse

David McMeekin

Royal Society URF

Sub department

  • Condensed Matter Physics

Research groups

  • Snaith group
david.mcmeekin@physics.ox.ac.uk
Telephone: 01865 (2)82327
Robert Hooke Building, room G24
  • About
  • Publications

Crystal-facet-directed all vacuum-deposited perovskite solar cells

Nature Materials Springer Nature

Authors:

Xinyi Shen, Wing Tung Hui, Shuaifeng Hu, Fengning Yang, Junke Wang, Jin Yao, Atse Louwen, Bryan Siu Ting Tam, Lirong Rong, David McMeekin, Kilian Lohmann, Qimu Yuan, Matthew Naylor, Manuel Kober-Czerny, Seongrok Seo, Philippe Holzhey, Karl-Augustin Zaininger, Mark Christoforo, Perrine Carroy, Vincent Barth, Fion Sze Yan Yeung, Nakita Noel, Michael Johnston, Yen-Hung Lin, Henry Snaith

Abstract:

Vacuum-based deposition is a scalable, solvent-free industrial method ideal for uniform coatings on complex substrates. However, all vacuum-deposited perovskite solar cells fabricated by thermal evaporation trail solution-processed counterparts in efficiency and stability due to film quality challenges, necessitating advancement and improved understanding. Here, we report a co-evaporation route for 1.67-eV wide-bandgap perovskites by introducing a PbCl2 co-source to optimize film quality. We promote perovskite formation with pronounced (100) “face-up” orientation and deliver a certified all vacuum-deposited solar cell with 18.35% efficiency (19.3% in the lab) for 0.25-cm2 devices (18.5% for 1-cm2 cells). These cells retain 80% of peak efficiency after 1,080 hours under the ISOS-L-2 protocol. Leveraging operando hyperspectral imaging, we provide spatiotemporal spectral insight into halide segregation and trap-mediated recombination, correlating microscopic luminescence features with macroscopic device performance while distinguishing radiative from non-ideal recombination channels. We further demonstrate 27.2%-efficient 1-cm2 evaporated perovskite-on-silicon tandems and outdoor stability of all vacuum-deposited tandems in Italy, retaining ~80% initial performance after 8 months.
Details from ORA

Pagination

  • First page First
  • Previous page Prev
  • Page 1
  • Page 2
  • Page 3
  • Page 4
  • Page 5
  • Page 6
  • Page 7
  • Page 8
  • Current page 9

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Giving to Physics
  • Current students
  • Staff intranet