Source of rainfall above Mediterranean caves (Chauvet and Orgnac) and long-term trend of cave dripping oxygen isotopes based on 20 years monitoring records: Importance for speleothem-based climate reconstructions
Quaternary Science Reviews 349 (2025) 109145
Abstract:
Understanding the factors that shape climate and influence the isotopic composition of precipitation is crucial for paleoclimate reconstructions, especially in regions with Mediterranean climates where rainfall is influenced by both Atlantic and Mediterranean moisture sources. This study examines the relationship between moisture origins, climatic variables, and the stable isotopic composition of precipitation and cave drip water in the Orgnac and Chauvet caves, located in southern France, over a 20-year period. The research reveals notable seasonal variations in rainfall δ18O values, driven by temperature and Rayleigh distillation processes. As shown in our previous work in Villars Cave (SW-France), temperature changes alone cannot fully explain the observed isotopic variability. We observed that winter precipitation tends to have lower δ18O values due to longer transport distances from distant oceanic sources, while summer precipitation displays higher δ18O values due to shorter transport paths. Additionally, the study highlights the influence of sea surface wind speeds and evaporation rates on water vapor isotopes, further shaping the seasonal δ18O patterns. As rainwater infiltrates the soil and percolates into the karst system, the seasonal δ18O signal in drip water is often dampened due to mixing in the reservoirs above the caves, which typically reduces seasonality. The key findings include: (1) a multi-year increasing trend in drip water δ18O, likely associated with reduced local water excess and the effects of global warming, with significant implications for speleothem isotope records, and (2) moisture from the Mediterranean Sea contributes to 10% of the total precipitation source, despite the region's proximity to the sea, especially during intense storm events. This study provides new insights into the complex interactions between moisture sources, temperature, and isotopic signatures in Mediterranean climate regions, with implications for improving speleothem-based paleoclimate reconstructions.
A past and present perspective on the European summer vapor pressure deficit
Climate of the Past 20:3 (2024) 573-595
Abstract:
The response of evapotranspiration to anthropogenic warming is of critical importance for the water and carbon cycle. Contradictory conclusions about evapotranspiration changes are caused primarily by their brevity in time and sparsity in space, as well as the strong influence of internal variability. Here, we present the first gridded reconstruction of the summer (June, July, and August) vapor pressure deficit (VPD) for the past 4 centuries at the European level. This gridded reconstruction is based on 26 European tree ring oxygen isotope records and is obtained using a random forest approach. According to validation scores obtained with the Nash–Sutcliffe model efficiency, our reconstruction is robust over large parts of Europe since 1600, in particular for the westernmost and northernmost regions, where most tree ring records are located. Based on our reconstruction, we show that from the mid-1700s a trend towards higher summer VPD occurred in central Europe and the Mediterranean region that is related to a simultaneous increase in temperature and decrease in precipitation. This increasing summer VPD trend continues throughout the observational period and in recent times. Moreover, our summer VPD reconstruction helps to visualize the local and regional impacts of the current climate change, as well as to minimize statistical uncertainties of historical VPD variability. This paper provides also new insights into the relationship between summer VPD and large-scale atmospheric circulation, and we show that summer VPD has two preferred modes of variability, namely a NW–SE dipole-like mode and a N–S dipole-like mode. Furthermore, the interdisciplinary use of the data should be emphasized, as summer VPD is a crucial parameter for many climatological feedback processes in the Earth's surface system. The reconstructed summer VPD gridded data over the last 400 years are available at the following link: https://doi.org/10.5281/zenodo.5958836 (Balting et al., 2022).
Increased wintertime European atmospheric blocking frequencies in General Circulation Models with an eddy-permitting ocean
npj Climate and Atmospheric Science 6:1 (2023) 50
Abstract:
Midlatitude atmospheric blocking events are important drivers of long-lasting extreme weather conditions at regional to continental scales. However, modern climate models consistently underestimate their frequency of occurrence compared to observations, casting doubt on future projections of climate extremes. Using the prominent and largely underestimated winter blocking events in Europe as a test case, this study first introduces a spatio-temporal approach to study blocking activity based on a clustering technique, allowing to assess models’ ability to simulate both realistic frequencies and locations of blocking events. A sensitivity analysis from an ensemble of 49 simulations from 24 coupled climate models shows that the presence of a mesoscale eddy-permitting ocean model increases the realism of simulated blocking events for almost all types of patterns clustered from observations. This finding is further explained and supported by concomitant reductions in well-documented biases in Gulf Stream and North Atlantic Current positions, as well as in the midlatitude jet stream variability.
Clarifying the role of ENSO on Easter Island precipitation changes: Potential environmental implications for the last millennium
Paleoceanography and Paleoclimatology 37:12 (2022) e2022PA004514
Abstract:
El Niño Southern Oscillation (ENSO) events yield precipitation deficits and ensuing droughts, often damaging regional forests, in many parts of the world. The relative roles of ENSO, other natural climate changes, and anthropogenic factors on the forest clearing of Easter Island over the last millennium are still debated. Here, we analyze Easter Island precipitation changes using in situ, satellite-derived and reanalysis products spanning the last 4–7 decades, and 46 monthly 156-year-long (1850–2014) simulations derived from 25 CMIP5 and 21 CMIP6 (Coupled Model Intercomparison Project phases 5 and 6) General Circulation Models. Our analysis shows that La Niña events, the cold phases of ENSO, cause precipitation deficits of −0.2 to −0.3 standard deviation (relative to long-term mean) in all analyzed data types. ENSO-like events are further examined over the last millennium (850–1981). A new multiproxy reconstruction of the NINO3.4 index based on proxy records from the Past Global Changes 2k database and Random Forest method is produced. Our reconstruction reveals unusual high recurrences of La Niña-like situations during the fifteenth to seventeenth centuries, which likely induced significant precipitation deficits on the island. These situations are compared to published vegetation reconstructions based on pollen analyses derived from sedimentary cores collected in three island sites. We conclude the environmental consequences of cumulative precipitation deficits over long-lasting La Niña-like situations reconstructed here over the fifteenth to seventeenth centuries were likely favoring drought and forest flammability. La Niña events should be better accounted for among the causes of forest clearing on Easter Island.
Early warning signal for a tipping point suggested by a millennial Atlantic Multidecadal Variability reconstruction
Nature Communications 13:1 (2022) 5176
Abstract:
Atlantic multidecadal variability is a coherent mode of natural climate variability occurring in the North Atlantic Ocean, with strong impacts on human societies and ecosystems worldwide. However, its periodicity and drivers are widely debated due to the short temporal extent of instrumental observations and competing effects of both internal and external climate factors acting on North Atlantic surface temperature variability. Here, we use a paleoclimate database and an advanced statistical framework to generate, evaluate, and compare 312 reconstructions of the Atlantic multidecadal variability over the past millennium, based on different indices and regression methods. From this process, the best reconstruction is obtained with the random forest method, and its robustness is checked using climate model outputs and independent oceanic paleoclimate data. This reconstruction shows that memory in variations of Atlantic multidecadal variability have strongly increased recently—a potential early warning signal for the approach of a North Atlantic tipping point.