Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Black Hole

Lensing of space time around a black hole. At Oxford we study black holes observationally and theoretically on all size and time scales - it is some of our core work.

Credit: ALAIN RIAZUELO, IAP/UPMC/CNRS. CLICK HERE TO VIEW MORE IMAGES.

Lance Miller

Professor of Astrophysics

Research theme

  • Astronomy and astrophysics

Sub department

  • Astrophysics

Research groups

  • Beecroft Institute for Particle Astrophysics and Cosmology
  • Cosmology
  • Euclid
Lance.Miller@physics.ox.ac.uk
  • About
  • Publications

The evolution of host mass and black hole mass in QSOs from the 2dF QSO Redshift Survey

ArXiv astro-ph/0609270 (2006)

Authors:

S Fine, SM Croom, L Miller, A Babic, D Moore, B Brewer, RG Sharp, BJ Boyle, T Shanks, RJ Smith, PJ Outram, NS Loaring

Abstract:

We investigate the relation between the mass of super-massive black holes (Mbh) in QSOs and the mass of the dark matter halos hosting them (Mdh). We measure the widths of broad emission lines (Mgii lambda 2798, Civ lambda 1549) from QSO composite spectra as a function of redshift. These widths are then used to determine virial black hole mass estimates. We compare our virial black hole mass estimates to dark matter halo masses for QSO hosts derived by Croom et al. (2005) based on measurements of QSO clustering. This enables us to trace the Mbh-Mdh relation over the redshift range z=0.5 to 2.5. We calculate the mean zero-point of the Mbh-Mdh relation to be Mbh=10^(8.4+/-0.2)Msun for an Mdh=10^(12.5)Msun. These data are then compared with several models connecting Mbh and Mdh as well as recent hydrodynamical simulations of galaxy evolution. We note that the flux limited nature of QSO samples can cause a Malmquist-type bias in the measured zero-point of the Mbh-Mdh relation. The magnitude of this bias depends on the scatter in the Mbh-Mdh relation, and we reevaluate the zero-point assuming three published values for this scatter. (abridged)
Details from ArXiV
More details from the publisher
More details

Bayesian Photometric Redshifts for Weak Lensing Applications

ArXiv astro-ph/0607302 (2006)

Authors:

Edward Edmondson, Lance Miller, Christian Wolf

Abstract:

The next generation of weak gravitational lensing surveys is capable of generating good measurements of cosmological parameters, provided that, amongst other requirements, adequate redshift information is available for the background galaxies that are measured. It is frequently assumed that photometric redshift techniques provide the means to achieve this. Here we compare Bayesian and frequentist approaches to photometric redshift estimation, particularly at faint magnitudes. We identify and discuss the biases that are inherent in the various methods, and describe an optimum Bayesian method for extracting redshift distributions from photometric data.
Details from ArXiV
More details from the publisher
More details

Variable iron-line emission near the black hole of Markarian 766

ArXiv astro-ph/0605130 (2006)

Authors:

L Miller, TJ Turner, JN Reeves, IM George, D Porquet, K Nandra, M Dovciak

Abstract:

We investigate the link between ionised Fe X-ray line emission and continuum emission in the bright nearby AGN, Mrk 766. A new long (433 ks) XMM-Newton observation is analysed, together with archival data from 2000 and 2001. The contribution from ionised line emission is measured and its time variations on short (5-20 ks) timescales are correlated with the continuum emission. The ionised line flux is found to be highly variable and to be strongly correlated with the continuum flux, demonstrating an origin for the ionised line emission that is co-located with the continuum emission. Most likely the emission is ionised reflection from the accretion disc within a few A.U. of the central black hole, and its detection marks the first time that such an origin has been identified other than by fitting to spectral line profiles. Future observations may be able to measure a time lag and hence achieve reverberation mapping of AGN at X-ray energies.
Details from ArXiV
More details from the publisher
More details

Evidence for orbital motion of material close to the central black hole of Mrk 766

Astronomy and Astrophysics 445 (2006) 59-67

Authors:

L Miller, Turner, T.J., George, I.M., Reeves, J.N.
More details from the publisher
More details
Details from ArXiV

The 2dF QSO redshift survey-XV. Correlation analysis of redshift-space distortions

Monthly Notices of the Royal Astronomical Society 360:3 (2005) 1040-1054

Authors:

J Da Ângela, PJ Outram, T Shanks, BJ Boyle, SM Croom, NS Loaring, L Miller, RJ Smith

Abstract:

We analyse the redshift-space (z-space) distortions of quasi-stellar object (QSO) clustering in the 2-degree field instrument (2dF) QSO Redshift Survey (2QZ). To interpret the z-space correlation function, ξ(σ, π), we require an accurate model for the QSO real-space correlation function, ξ(r). Although a single power-law ξ(r) ξ r-γ model fits the projected correlation function [wp(σ)] at small scales, it implies somewhat too shallow a slope for both wp(σ) and the z-space correlation function, ξ(s), at larger scales (≳20 h-1 Mpc). Motivated by the form for ξ(r) seen in the 2dF Galaxy Redshift Survey (2dFGRS) and in standard A cold dark matter (COM) predictions, we use a double power-law model for ξ(r), which gives a good fit to ξ(s) and w p(σ). The model is parametrized by a slope of γ = 1.45 for 1 < r < 10 h-1 Mpc and γ = 2.30 for 10 < r < 40 h-1 Mpc. As found for the 2dFGRS, the value of β determined from the ratio of ξ(s)/ξ(r) depends sensitively on the form of ξ(r) assumed. With our double power-law form for ξ(r), we measure β(z = 1.4) = 0.32-0.11+0.09. Assuming the same model for ξ(r), we then analyse the z-space distortions in the 2QZ ξ(σ, π) and put constraints on the values of Ωm0 and β(z = 1.4), using an improved version of the method of Hoyle et al. The constraints we derive are Ωm0 = 0.35-0.13+0.19, β(z = 1.4) = 0.50-0.15+0.13 in agreement with our ξ(s)/ξ(r) results at the ∼1σ level. © 2005 RAS.
More details from the publisher
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 31
  • Page 32
  • Page 33
  • Page 34
  • Current page 35
  • Page 36
  • Page 37
  • Page 38
  • Page 39
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet