Rethinking the 67 Hz QPO in GRS 1915+105: type-C QPOs at the innermost stable circular orbit
ArXiv 2307.00867 (2023)
Rapid X-ray variability of the gamma-ray binary LS I +61°303
Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 523:3 (2023) 4282-4293
MeerKAT caught a Mini Mouse: serendipitous detection of a young radio pulsar escaping its birth site
Monthly Notices of the Royal Astronomical Society Oxford University Press 523:2 (2023) 2850-2857
Abstract:
In MeerKAT observations pointed at a Galactic X-ray binary located on the Galactic plane, we serendipitously discovered a radio nebula with cometary-like morphology. The feature, which we named 'the Mini Mouse' based on its similarity with the previously discovered 'Mouse' nebula, points back towards the previously unidentified candidate supernova remnant G45.24+0.18. We observed the location of the Mini Mouse with MeerKAT in two different observations, and we localized with arcsecond precision the 138-ms radio pulsar PSR J1914+1054g, recently discovered by the FAST telescope, to a position consistent with the head of the nebula. We confirm a dispersion measure of about 418 pc cm-3 corresponding to a distance between 7.8 and 8.8 kpc based on models of the electron distribution. Using our accurate localization and two period measurements spaced 90 d apart, we calculate a period derivative of (2.7 ± 0.3) × 10 -14 s s-1. We derive a characteristic age of approximately 82 kyr and a spin-down luminosity of 4 × 1035 erg s-1. For a pulsar age comparable with the characteristic age, we find that the projected velocity of the neutron star is between 320 and 360 km s-1 if it was born at the location of the supernova remnant. The size of the proposed remnant appears small if compared with the pulsar characteristic age; however, the relatively high density of the environment near the Galactic plane could explain a suppressed expansion rate and thus a smaller remnant.Bursts from Space: MeerKAT – the first citizen science project dedicated to commensal radio transients
Monthly Notices of the Royal Astronomical Society Oxford University Press 523:2 (2023) 2219-2235
Abstract:
The newest generation of radio telescopes is able to survey large areas with high sensitivity and cadence, producing data volumes that require new methods to better understand the transient sky. Here, we describe the results from the first citizen science project dedicated to commensal radio transients, using data from the MeerKAT telescope with weekly cadence. Bursts from Space: MeerKAT was launched late in 2021 and received ∼89 000 classifications from over 1000 volunteers in 3 months. Our volunteers discovered 142 new variable sources which, along with the known transients in our fields, allowed us to estimate that at least 2.1 per cent of radio sources are varying at 1.28 GHz at the sampled cadence and sensitivity, in line with previous work. We provide the full catalogue of these sources, the largest of candidate radio variables to date. Transient sources found with archival counterparts include a pulsar (B1845-01) and an OH maser star (OH 30.1–0.7), in addition to the recovery of known stellar flares and X-ray binary jets in our observations. Data from the MeerLICHT optical telescope, along with estimates of long time-scale variability induced by scintillation, imply that the majority of the new variables are active galactic nuclei. This tells us that citizen scientists can discover phenomena varying on time-scales from weeks to several years. The success both in terms of volunteer engagement and scientific merit warrants the continued development of the project, while we use the classifications from volunteers to develop machine learning techniques for finding transients.MeerKAT caught a Mini Mouse: serendipitous detection of a young radio pulsar escaping its birth sit
(2023)