Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Black Hole

Lensing of space time around a black hole. At Oxford we study black holes observationally and theoretically on all size and time scales - it is some of our core work.

Credit: ALAIN RIAZUELO, IAP/UPMC/CNRS. CLICK HERE TO VIEW MORE IMAGES.

Dr Hengxing Pan

Visitor

Research theme

  • Astronomy and astrophysics

Sub department

  • Astrophysics

Research groups

  • Cosmology
  • Galaxy formation and evolution
  • MeerKAT
  • The Square Kilometre Array (SKA)
hengxing.pan@physics.ox.ac.uk
  • About
  • Publications

MIGHTEE-H  i : The M H  i – M ☆ relation of massive galaxies and the H  i mass function at 0.25 < z < 0.5

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) (2025) staf1857

Authors:

Hengxing Pan, Matt J Jarvis, Ian Heywood, Tariq Yasin, Natasha Maddox, Mario G Santos, Maarten Baes, Anastasia A Ponomareva, Sambatriniaina HA Rajohnson

Abstract:

Abstract The relationship between the already formed stellar mass in a galaxy and the gas reservoir of neutral atomic hydrogen, is a key element in our understanding of how gas is turned into stars in galaxy haloes. In this paper, we measure the $M_{\rm H\, \small {\rm i}}-M_{\star }$ relation based on a stellar-mass selected sample at 0.25 < z < 0.5 and the MIGHTEE-H i DR1 spectral data. Using a powerful Bayesian stacking technique, for the first time we are also able to measure the underlying bivariate distribution of H i mass and stellar mass of galaxies with M⋆ > 109.5 M⊙, finding that an asymmetric underlying H i distribution is strongly preferred by our complete samples. We define the concepts of the average of the logarithmic H i mass, $\langle \log _{10}(M_{\rm H\, \small {\rm i}})\rangle$, and the logarithmic average of the H i mass, $\log _{10}(\langle M_{\rm H\, \small {\rm i}}\rangle )$, and find that the difference between $\langle \log _{10}(M_{\rm H\, \small {\rm i}})\rangle$ and $\log _{10}(\langle M_{\rm H\, \small {\rm i}}\rangle )$ can be as large as ∼0.5 dex for the preferred asymmetric H i distribution. We observe shallow slopes in the underlying $M_{\rm H\, \small {\rm i}}-M_{\star }$ scaling relations, suggesting the presence of an upper H i mass limit beyond which a galaxy can no longer retain further H i gas. From our bivariate distribution we also infer the H i mass function at this redshift and find tentative evidence for a decrease of 2-10 times in the co-moving space density of the most H i massive galaxies up to z ∼ 0.5.
More details from the publisher

MIGHTEE-H  i : the direct detection of neutral hydrogen in galaxies at z > 0.25

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 544:1 (2025) 193-210

Authors:

Matt J Jarvis, Madalina N Tudorache, I Heywood, Anastasia A Ponomareva, M Baes, Natasha Maddox, Kristine Spekkens, Andreea Vărăşteanu, CL Hale, Mario G Santos, RG Varadaraj, Elizabeth AK Adams, Alessandro Bianchetti, Barbara Catinella, Jacinta Delhaize, M Maksymowicz-Maciata, Pavel E Mancera Piña, Hengxing Pan, Amélie Saintonge, Gauri Sharma, O Ivy Wong

Abstract:

ABSTRACT Atomic hydrogen constitutes the gas reservoir from which molecular gas and star formation in galaxies emerges. However, the weakness of the line means it has been difficult to directly detect in all but the very local Universe. Here, we present results from the first search using the MeerKAT International Tiered Extragalactic Exploration (MIGHTEE) Survey for high-redshift ($z>0.25$) H i emission from individual galaxies. By searching for 21-cm emission centred on the position and redshift of optically selected emission-line galaxies we overcome difficulties that hinder untargeted searches. We detect 11 galaxies at $z>0.25$, forming the first sample of $z>0.25$ detections with an interferometer, with the highest redshift detection at $z = 0.3841$. We find they have much larger H i masses than their low-redshift H i-selected counterparts for a given stellar mass. This can be explained by the much larger cosmological volume probed at these high redshifts, and does not require any evolution of the H i mass function. We make the first-ever measurement of the baryonic Tully–Fisher relation (bTFr) with H  i at $z>0.25$ and find consistency with the local bTFr, but with tentative evidence of a flattening in the relation at these redshifts for higher-mass objects. This may signify evolution, in line with predictions from hydrodynamic simulations, or that the molecular gas mass in these high-mass galaxies could be significant. This study paves the way for future studies of H i beyond the local Universe, using both searches targeted at known objects and via pure H i selection.
More details from the publisher
More details

FAST Drift Scan Survey for H i Intensity Mapping: Simulation of Bayesian-stacking-based H i Mass Function Estimation

The Astrophysical Journal American Astronomical Society 991:2 (2025) 163-163

Authors:

Jiaxin Wang, Yichao Li, Hengxing Pan, Furen Deng, Diyang Liu, Wenxiu Yang, Wenkai Hu, Yougang Wang, Xin Zhang, Xuelei Chen

Abstract:

Abstract This study investigates the estimation of the neutral hydrogen (H i) mass function (HiMF) using a Bayesian stacking approach with simulated data for the Five-hundred-meter Aperture Spherical radio Telescope (FAST) H i intensity mapping (HiIM) drift-scan surveys. Using data from the IllustrisTNG simulation, we construct H i sky cubes at redshift z ∼ 0.1 and the corresponding optical galaxy catalogs, simulating FAST observations under various survey strategies, including pilot, deep-field, and ultradeep-field surveys. The HiMF is measured for distinct galaxy populations—classified by optical properties into red, blue, and bluer galaxies—and injected with systematic effects such as observational noise and flux confusion caused by the FAST beam. The results show that Bayesian stacking significantly enhances HiMF measurements. For red and blue galaxies, the HiMF can be well constrained with pilot surveys, while deeper surveys are required for the bluer galaxy population. Our analysis also reveals that sample variance dominates over observational noise, emphasizing the importance of wide-field surveys to improve constraints. Furthermore, flux confusion shifts the HiMF toward higher masses, which we address using a transfer function for correction. Finally, we explore the effects of intrinsic sample incompleteness and propose a framework to quantify its impact. This work lays the groundwork for future HiMF studies with FAST HiIM, addressing key challenges and enabling robust analyses of H i content across galaxy populations.
More details from the publisher

MIGHTEE-HI: the radial acceleration relation with resolved stellar mass measurements

Monthly Notices of the Royal Astronomical Society Oxford University Press 541:3 (2025) 2366-2392

Authors:

Andreea A Vărăşteanu, Matt J Jarvis, Anastasia A Ponomareva, Harry Desmond, Ian Heywood, Tariq Yasin, Natasha Maddox, Marcin Glowacki, Michalina Maksymowicz-Maciata, Pavel E Mancera Piña, Hengxing Pan

Abstract:

The radial acceleration relation (RAR) is a fundamental relation linking baryonic and dark matter in galaxies by relating the observed acceleration derived from dynamics to the one estimated from the baryonic mass. This relation exhibits small scatter, thus providing key constraints for models of galaxy formation and evolution – allowing us to map the distribution of dark matter in galaxies – as well as models of modified dynamics. However, it has only been extensively studied in the very local Universe with largely heterogeneous samples. We present a new measurement of the RAR, utilizing a homogeneous sample of 19 H i-selected galaxies out to . We introduce a novel approach of measuring resolved stellar masses using spectral energy distribution fitting across 10 photometric bands to determine the resolved mass-to-light ratio, which we show is essential for measuring the acceleration due to baryons in the low-acceleration regime. Our results reveal a tight RAR with a low-acceleration power-law slope of , consistent with previous studies. Adopting a spatially varying mass-to-light ratio yields the tightest RAR with an intrinsic scatter of only dex, highlighting the importance of resolved stellar mass measurements in accurately characterizing the gravitational contribution of the baryons in low-mass, gas-rich galaxies. We also find the first tentative evidence for redshift evolution in the acceleration scale, but more data will be required to confirm this. Adopting a more general MOND interpolating function, we find that our results ameliorate the tension between previous RAR analyses, the Solar System quadrupole, and wide-binary test.
More details from the publisher
Details from ORA
More details

New Constraints on the Evolution of the M H i − M ⋆ Scaling Relation Combining CHILES and MIGHTEE-H i Data

The Astrophysical Journal American Astronomical Society 982:2 (2025) 82

Authors:

Alessandro Bianchetti, Francesco Sinigaglia, Giulia Rodighiero, Ed Elson, Mattia Vaccari, DJ Pisano, Nicholas Luber, Isabella Prandoni, Kelley Hess, Maarten Baes, Elizabeth AK Adams, Filippo M Maccagni, Alvio Renzini, Laura Bisigello, Min Yun, Emmanuel Momjian, Hansung B Gim, Hengxing Pan, Thomas A Oosterloo, Richard Dodson, Danielle Lucero, Bradley S Frank, Olivier Ilbert, Luke JM Davies

Abstract:

The improved sensitivity of interferometric facilities to the 21 cm line of atomic hydrogen (H i) enables studies of its properties in galaxies beyond the local Universe. In this work, we perform a 21 cm line spectral stacking analysis combining the MeerKAT International GigaHertz Tiered Extragalactic Exploration and COSMOS H i Large Extra-galactic Survey surveys in the COSMOS field to derive a robust H i–stellar mass relation at z ≈ 0.36. In particular, by stacking thousands of star-forming galaxies subdivided into stellar mass bins, we optimize the signal-to-noise ratio of targets and derive mean H i masses in the different stellar mass intervals for the investigated galaxy population. We combine spectra from the two surveys, estimate H i masses, and derive the scaling relation log10MHI=(0.32±0.04)log10M⋆+(6.65±0.36) . Our findings indicate that galaxies at z ≈ 0.36 are H i richer than those at z ≈ 0 but H i poorer than those at z ≈ 1, with a slope consistent across redshift, suggesting that stellar mass does not significantly affect H i exchange mechanisms. We also observe a slower growth rate H i relative to the molecular gas, supporting the idea that the accretion of cold gas is slower than the rate of consumption of molecular gas to form stars. This study contributes to understanding the role of atomic gas in galaxy evolution and sets the stage for future development of the field in the upcoming Square Kilometre Array era.
More details from the publisher
Details from ORA
More details

Pagination

  • Current page 1
  • Page 2
  • Page 3
  • Page 4
  • Page 5
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Giving to Physics
  • Current students
  • Staff intranet