Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Black Hole

Lensing of space time around a black hole. At Oxford we study black holes observationally and theoretically on all size and time scales - it is some of our core work.

Credit: ALAIN RIAZUELO, IAP/UPMC/CNRS. CLICK HERE TO VIEW MORE IMAGES.

Dr Natalia Porqueres

Visitor

Research theme

  • Astronomy and astrophysics

Sub department

  • Astrophysics

Research groups

  • Beecroft Institute for Particle Astrophysics and Cosmology
natalia.porqueres@physics.ox.ac.uk
  • About
  • Publications

The Cosmic Graph: Optimal Information Extraction from Large-Scale Structure using Catalogues

OJA 2022

Authors:

T. Lucas Makinen, Tom Charnock, Pablo Lemos, Natalia Porqueres, Alan Heavens, Benjamin D. Wandelt

Abstract:

We present an implicit likelihood approach to quantifying cosmological information over discrete catalogue data, assembled as graphs. To do so, we explore cosmological inference using mock dark matter halo catalogues. We employ Information Maximising Neural Networks (IMNNs) to quantify Fisher information extraction as a function of graph representation. We a) demonstrate the high sensitivity of modular graph structure to the underlying cosmology in the noise-free limit, b) show that networks automatically combine mass and clustering information through comparisons to traditional statistics, c) demonstrate that graph neural networks can still extract information when catalogues are subject to noisy survey cuts, and d) illustrate how nonlinear IMNN summaries can be used as asymptotically optimal compressed statistics for Bayesian implicit likelihood inference. We reduce the area of joint Ωm,σ8 parameter constraints with small (∼100 object) halo catalogues by a factor of 42 over the two-point correlation function, and demonstrate that the networks automatically combine mass and clustering information. This work utilises a new IMNN implementation over graph data in Jax, which can take advantage of either numerical or auto-differentiability. We also show that graph IMNNs successfully compress simulations far from the fiducial model at which the network is fitted, indicating a promising alternative to n-point statistics in catalogue-based analyses.
Full PDF text
Details from ArXiV

Lifting weak lensing degeneracies with a field-based likelihood

MNRAS 2022

Authors:

Natalia Porqueres, Alan Heavens, Daniel Mortlock, Guilhem Lavaux

Abstract:

We present a field-based approach to the analysis of cosmic shear data to infer jointly cosmological parameters and the dark matter distribution. This forward modelling approach samples the cosmological parameters and the initial matter fluctuations, using a physical gravity model to link the primordial fluctuations to the non-linear matter distribution. Cosmological parameters are sampled and updated consistently through the forward model, varying (1) the initial matter power spectrum, (2) the geometry through the distance-redshift relationship, and (3) the growth of structure and light-cone effects. Our approach extracts more information from the data than methods based on two-point statistics. We find that this field-based approach lifts the strong degeneracy between the cosmological matter density, Ωm, and the fluctuation amplitude, σ8, providing tight constraints on these parameters from weak lensing data alone. In the simulated four-bin tomographic experiment we consider, the field-based likelihood yields marginal uncertainties on σ8 and Ωm that are, respectively, a factor of 3 and 5 smaller than those from a two-point power spectrum analysis applied to the same underlying data.
Full PDF text
Details from ArXiV

Bayesian forward modelling of cosmic shear data

MNRAS 2021

Authors:

Natalia Porqueres, Alan Heavens, Daniel Mortlock, Guilhem Lavaux

Abstract:

We present a Bayesian hierarchical modelling approach to infer the cosmic matter density field, and the lensing and the matter power spectra, from cosmic shear data. This method uses a physical model of cosmic structure formation to infer physically plausible cosmic structures, which accounts for the non-Gaussian features of the gravitationally evolved matter distribution and light-cone effects. We test and validate our framework with realistic simulated shear data, demonstrating that the method recovers the unbiased matter distribution and the correct lensing and matter power spectrum. While the cosmology is fixed in this test, and the method employs a prior power spectrum, we demonstrate that the lensing results are sensitive to the true power spectrum when this differs from the prior. In this case, the density field samples are generated with a power spectrum that deviates from the prior, and the method recovers the true lensing power spectrum. The method also recovers the matter power spectrum across the sky, but as currently implemented, it cannot determine the radial power since isotropy is not imposed. In summary, our method provides physically plausible inference of the dark matter distribution from cosmic shear data, allowing us to extract information beyond the two-point statistics and exploiting the full information content of the cosmological fields.
Full PDF text
Details from ArXiV

A hierarchical field-level inference approach to reconstruction from sparse Lyman-α forest data

A&A 2020

Authors:

Natalia Porqueres, Oliver Hahn, Jens Jasche, Guilhem Lavaux

Abstract:

We address the problem of inferring the three-dimensional matter distribution from a sparse set of one-dimensional quasar absorption spectra of the Lyman-α forest. Using a Bayesian forward modelling approach, we focus on extending the dynamical model to a fully self-consistent hierarchical field-level prediction of redshift-space quasar absorption sightlines. Our field-level approach rests on a recently developed semiclassical analogue to Lagrangian perturbation theory (LPT), which improves over noise problems and interpolation requirements of LPT. It furthermore allows for a manifestly conservative mapping of the optical depth to redshift space. In addition, this new dynamical model naturally introduces a coarse-graining scale, which we exploited to accelerate the Markov chain Monte-Carlo (MCMC) sampler using simulated annealing. By gradually reducing the effective temperature of the forward model, we were able to allow it to first converge on large spatial scales before the sampler became sensitive to the increasingly larger space of smaller scales. We demonstrate the advantages, in terms of speed and noise properties, of this field-level approach over using LPT as a forward model, and, using mock data, we validated its performance to reconstruct three-dimensional primordial perturbations and matter distribution from sparse quasar sightlines.
Full PDF text
Details from ArXiV

Inferring high redshift large-scale structure dynamics from the Lyman-alpha forest

A&A 2019

Authors:

Natalia Porqueres, Jens Jasche, Guilhem Lavaux, Torsten Enßlin

Abstract:

One of the major science goals over the coming decade is to test fundamental physics with probes of the cosmic large-scale structure out to high redshift. Here we present a fully Bayesian approach to infer the three-dimensional cosmic matter distribution and its dynamics at z>2 from observations of the Lyman-α forest. We demonstrate that the method recovers the unbiased mass distribution and the correct matter power spectrum at all scales. Our method infers the three-dimensional density field from a set of one-dimensional spectra, interpolating the information between the lines of sight. We show that our algorithm provides unbiased mass profiles of clusters, becoming an alternative for estimating cluster masses complementary to weak lensing or X-ray observations. The algorithm employs a Hamiltonian Monte Carlo method to generate realizations of initial and evolved density fields and the three-dimensional large-scale flow, revealing the cosmic dynamics at high redshift. The method correctly handles multi-modal parameter distributions, which allow constraining the physics of the intergalactic medium (IGM) with high accuracy. We performed several tests using realistic simulated quasar spectra to test and validate our method. Our results show that detailed and physically plausible inference of three-dimensional large-scale structures at high redshift has become feasible.
Full PDF text
Details from ArXiV

Pagination

  • Current page 1
  • Page 2
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet