Measurement of jet pT correlations in Pb + Pb and pp collisions at sNN=2.76TeV with the ATLAS detector
Physics Letters B Elsevier 774 (2017) 379-402
Abstract:
Measurements of dijet pT correlations in Pb+Pb and pp collisions at a nucleon–nucleon centre-of-mass energy of sNN=2.76TeV are presented. The measurements are performed with the ATLAS detector at the Large Hadron Collider using Pb+Pb and pp data samples corresponding to integrated luminosities of 0.14nb−1 and 4.0pb−1, respectively. Jets are reconstructed using the anti-kt algorithm with radius parameter values R=0.3 and R=0.4. A background subtraction procedure is applied to correct the jets for the large underlying event present in Pb+Pb collisions. The leading and sub-leading jet transverse momenta are denoted pT1 and pT2. An unfolding procedure is applied to the two-dimensional (pT1,pT2) distributions to account for experimental effects in the measurement of both jets. Distributions of (1/N)dN/dxJ, where xJ=pT2/pT1, are presented as a function of pT1 and collision centrality. The distributions are found to be similar in peripheral Pb+Pb collisions and pp collisions, but highly modified in central Pb+Pb collisions. Similar features are present in both the R=0.3 and R=0.4 results, indicating that the effects of the underlying event are properly accounted for in the measurement. The results are qualitatively consistent with expectations from partonic energy loss models.Search for heavy resonances decaying to a W or Z boson and a Higgs boson in theqq¯(′)bb¯final state in pp collisions ats=13 TeVwith the ATLAS detector
Physics Letters B Elsevier (2017)
Abstract:
A search for heavy resonances decaying to a W or Z boson and a Higgs boson in the qq¯(′)bb¯ final state is described. The search uses 36.1 fb−1 of proton–proton collision data at s=13 TeV collected by the ATLAS detector at the CERN Large Hadron Collider in 2015 and 2016. The data are in agreement with the Standard Model expectations, with the largest excess found at a resonance mass of 3.0 TeV with a local (global) significance of 3.3 (2.1) σ. The results are presented in terms of constraints on a simplified model with a heavy vector triplet. Upper limits are set on the production cross-section times branching ratio for resonances decaying to a W (Z) boson and a Higgs boson, itself decaying to bb¯, in the mass range between 1.1 and 3.8 TeV at 95% confidence level; the limits range between 83 and 1.6 fb (77 and 1.1 fb) at 95% confidence level.Search for supersymmetry in final states with two same-sign or three leptons and jets using 36 fb(-1) of root&ITs&IT = 13 TeV &ITpp&IT collision data with the ATLAS detector
Journal of High Energy Physics Springer 2017:9 (2017) 84
Abstract:
A search for strongly produced supersymmetric particles using signatures involving multiple energetic jets and either two isolated same-sign leptons (e or μ), or at least three isolated leptons, is presented. The analysis relies on the identification of b-jets and high missing transverse momentum to achieve good sensitivity. A data sample of proton-proton collisions at s√=13 TeV recorded with the ATLAS detector at the Large Hadron Collider in 2015 and 2016, corresponding to a total integrated luminosity of 36.1 fb−1, is used for the search. No significant excess over the Standard Model prediction is observed. The results are interpreted in several simplified supersymmetric models featuring R-parity conservation or R-parity violation, extending the exclusion limits from previous searches. In models considering gluino pair production, gluino masses are excluded up to 1.87 TeV at 95% confidence level. When bottom squarks are pair-produced and decay to a chargino and a top quark, models with bottom squark masses below 700 GeV and light neutralinos are excluded at 95% confidence level. In addition, model-independent limits are set on a possible contribution of new phenomena to the signal region yields.Identification and rejection of pile-up jets at high pseudorapidity with the ATLAS detector
European Physical Journal C Springer 77:9 (2017) 580
Abstract:
The rejection of forward jets originating from additional proton–proton interactions (pile-up) is crucial for a variety of physics analyses at the LHC, including Standard Model measurements and searches for physics beyond the Standard Model. The identification of such jets is challenging due to the lack of track and vertex information in the pseudorapidity range | η| > 2.5. This paper presents a novel strategy for forward pile-up jet tagging that exploits jet shapes and topological jet correlations in pile-up interactions. Measurements of the per-jet tagging efficiency are presented using a data set of 3.2 fb - 1 of proton–proton collisions at a centre-of-mass energy of 13 TeV collected with the ATLAS detector. The fraction of pile-up jets rejected in the range 2.5 < | η| < 4.5 is estimated in simulated events with an average of 22 interactions per bunch-crossing. It increases with jet transverse momentum and, for jets with transverse momentum between 20 and 50 GeV, it ranges between 49% and 67% with an efficiency of 85% for selecting hard-scatter jets. A case study is performed in Higgs boson production via the vector-boson fusion process, showing that these techniques mitigate the background growth due to additional proton–proton interactions, thus enhancing the reach for such signatures.Search for new phenomena in dijet events using 37 fb^−1 of pp collision data collected at √s = 13 TeV with the ATLAS detector.
Physical Review D American Physical Society 96:5 (2017) 052004