Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
CMP
Credit: Jack Hobhouse

Peter Proks

Postdoctoral Research Assistant

Sub department

  • Condensed Matter Physics
peter.proks@physics.ox.ac.uk
Telephone: 72426
Clarendon Laboratory, room 071.4 & 071.7
  • About
  • Publications

Differential metabolic and nucleotide sensitivity of beta-cell and cardiac K-ATP channels

Biophysical Journal Cell Press 114:3, S1 (2018) 203a-204a

Authors:

Natascia Vedovato, Peter Proks, Olof H Rorsman, K Hennis, Frances M Ashcroft
More details from the publisher
Details from ORA
More details
More details

Correction to 'Running out of time: the decline of channel activity and nucleotide activation in adenosine triphosphate-sensitive K-channels'.

Philosophical Transactions B: Biological Sciences Royal Society 371:1702 (2016) 20160330

Authors:

Peter Proks, Michael Puljung, Natascia Vedovato, Gregor Sachse, Rachel Mulvaney, Frances Ashcroft
More details from the publisher
Details from ORA
More details
More details

Running out of time: the decline of channel activity and nucleotide activation in ATP-sensitive K-channels

Philosophical Transactions of the Royal Society of London: Biological Sciences Royal Society 371:1700 (2016) 20150426

Authors:

Peter Proks, Michael C Puljung, Natascia Vedovato, Gregor Sachse, Rachel Mulvaney, Frances Ashcroft

Abstract:

KATP channels act as key regulators of electrical excitability by coupling metabolic cues - mainly intracellular adenine nucleotide concentrations - to cellular potassium ion efflux. However, their study has been hindered by their rapid loss of activity in excised membrane patches (rundown), and by a second phenomenon, the decline of activation by Mg-nucleotides (DAMN). Degradation of PI(4,5)P2 and other phosphoinositides is the strongest candidate for the molecular cause of rundown. Broad evidence indicates that most other determinants of rundown (e.g. de-/phosphorylation, intracellular calcium, channel mutations that affect rundown) also act by influencing KATP channel regulation by phosphoinositides. Unfortunately, experimental conditions that reproducibly prevent rundown have remained elusive, necessitating post-hoc data compensation. Rundown is clearly distinct from DAMN. While the former is associated with pore-forming Kir6.2 subunits, DAMN is generally a slower process involving the regulatory sulfonylurea receptor (SUR) subunits. We speculate it arises when SUR subunits enter non-physiological conformational states associated with the loss of SUR nucleotide-binding domain dimerization following prolonged exposure to nucleotide-free conditions. This review presents new information on both rundown and DAMN, summarizes our current understanding of these processes and considers their physiological roles.
More details from the publisher
Details from ORA
More details
More details

Neonatal diabetes caused by homozygous KCNJ11 mutation demonstrates that tiny changes in ATP sensititvity markedly affect diabetes risk

Diabetologia Springer International Publishing AG 59:7 (2016) 1430-1436

Authors:

Natascia Vedovato, Edward Cliff, Peter Proks, Varadarajan Poovazhagi, Sarah Flanagan, Sian Ellard, Andrew Hattersley, Frances Ashcroft

Abstract:

Aims/hypothesis The pancreatic ATP-sensitive potassium (KATP) channel plays a pivotal role in linking beta cell metabolism to insulin secretion. Mutations in KATP channel genes can result in hypo- or hypersecretion of insulin, as in neonatal diabetes mellitus and congenital hyperinsulinism, respectively. To date, all patients affected by neonatal diabetes due to a mutation in the pore-forming subunit of the channel (Kir6.2, KCNJ11) are heterozygous for the mutation. Here, we report the first clinical case of neonatal diabetes caused by a homozygous KCNJ11 mutation.

Methods A male patient was diagnosed with diabetes shortly after birth. At 5 months of age, genetic testing revealed he carried a homozygous KCNJ11 mutation, G324R, (Kir6.2-G324R) and he was successfully transferred to sulfonylurea therapy (0.2 mg kg−1 day−1). Neither heterozygous parent was affected. Functional properties of wild-type, heterozygous and homozygous mutant KATP channels were examined after heterologous expression in Xenopus oocytes.

Results Functional studies indicated that the Kir6.2-G324R mutation reduces the channel ATP sensitivity but that the difference in ATP inhibition between homozygous and heterozygous channels is remarkably small. Nevertheless, the homozygous patient developed neonatal diabetes, whereas the heterozygous parents were, and remain, unaffected. Kir6.2-G324R channels were fully shut by the sulfonylurea tolbutamide, which explains why the patient’s diabetes was well controlled by sulfonylurea therapy.

Conclusions/interpretation The data demonstrate that tiny changes in KATP channel activity can alter beta cell electrical activity and insulin secretion sufficiently to cause diabetes. They also aid our understanding of how the Kir6.2-E23K variant predisposes to type 2 diabetes.

More details from the publisher
Details from ORA
More details
More details

Correction: Molecular action of sulphonylureas on KATP channels: a real partnership between drugs and nucleotides.

Biochemical Society transactions (2015)

Authors:

Heidi de Wet, P Proks
More details from the publisher
More details
More details

Pagination

  • First page First
  • Previous page Prev
  • Page 1
  • Page 2
  • Page 3
  • Current page 4
  • Page 5
  • Page 6
  • Page 7
  • Page 8
  • Page 9
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet