Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Juno Jupiter image

Tim Reichelt

Postdoctoral Research Assistant

Research theme

  • Climate physics

Sub department

  • Atmospheric, Oceanic and Planetary Physics

Research groups

  • Climate processes
tim.reichelt@physics.ox.ac.uk
Atmospheric Physics Clarendon Laboratory, room 104
GitHub
Personal Website
  • About
  • Publications

Beyond Bayesian model averaging over paths in probabilistic programs with stochastic support

Proceedings of The 27th International Conference on Artificial Intelligence and Statistics Journal of Machine Learning Research (2024) 829-837

Authors:

Tim Reichelt, Luke Ong, Thomas Rainforth

Abstract:

The posterior in probabilistic programs with stochastic support decomposes as a weighted sum of the local posterior distributions associated with each possible program path. We show that making predictions with this full posterior implicitly performs a Bayesian model averaging (BMA) over paths. This is potentially problematic, as BMA weights can be unstable due to model misspecification or inference approximations, leading to sub-optimal predictions in turn. To remedy this issue, we propose alternative mechanisms for path weighting: one based on stacking and one based on ideas from PAC-Bayes. We show how both can be implemented as a cheap post-processing step on top of existing inference engines. In our experiments, we find them to be more robust and lead to better predictions compared to the default BMA weights.
Details from ORA
More details

Expectation Programming: Adapting Probabilistic Programming Systems to Estimate Expectations Efficiently

Proceedings of the 38th Conference on Uncertainty in Artificial Intelligence, UAI 2022 (2022) 1676-1685

Authors:

T Reichelt, A Goliński, L Ong, T Rainforth

Abstract:

We show that the standard computational pipeline of probabilistic programming systems (PPSs) can be inefficient for estimating expectations and introduce the concept of expectation programming to address this. In expectation programming, the aim of the backend inference engine is to directly estimate expected return values of programs, as opposed to approximating their conditional distributions. This distinction, while subtle, allows us to achieve substantial performance improvements over the standard PPS computational pipeline by tailoring computation to the expectation we care about. We realize a particular instance of our expectation programming concept, Expectation Programming in Turing (EPT), by extending the PPS Turing to allow so-called target-aware inference to be run automatically. We then verify the statistical soundness of EPT theoretically, and show that it provides substantial empirical gains in practice.
More details

Rethinking Variational Inference for Probabilistic Programs with Stochastic Support

Advances in Neural Information Processing Systems 35 (2022)

Authors:

T Reichelt, L Ong, T Rainforth

Abstract:

We introduce Support Decomposition Variational Inference (SDVI), a new variational inference (VI) approach for probabilistic programs with stochastic support. Existing approaches to this problem rely on designing a single global variational guide on a variable-by-variable basis, while maintaining the stochastic control flow of the original program. SDVI instead breaks the program down into sub-programs with static support, before automatically building separate sub-guides for each. This decomposition significantly aids in the construction of suitable variational families, enabling, in turn, substantial improvements in inference performance.
More details

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet