Beyond Bayesian model averaging over paths in probabilistic programs with stochastic support
Proceedings of The 27th International Conference on Artificial Intelligence and Statistics Journal of Machine Learning Research (2024) 829-837
Abstract:
The posterior in probabilistic programs with stochastic support decomposes as a weighted sum of the local posterior distributions associated with each possible program path. We show that making predictions with this full posterior implicitly performs a Bayesian model averaging (BMA) over paths. This is potentially problematic, as BMA weights can be unstable due to model misspecification or inference approximations, leading to sub-optimal predictions in turn. To remedy this issue, we propose alternative mechanisms for path weighting: one based on stacking and one based on ideas from PAC-Bayes. We show how both can be implemented as a cheap post-processing step on top of existing inference engines. In our experiments, we find them to be more robust and lead to better predictions compared to the default BMA weights.Expectation Programming: Adapting Probabilistic Programming Systems to Estimate Expectations Efficiently
Proceedings of the 38th Conference on Uncertainty in Artificial Intelligence, UAI 2022 (2022) 1676-1685
Abstract:
We show that the standard computational pipeline of probabilistic programming systems (PPSs) can be inefficient for estimating expectations and introduce the concept of expectation programming to address this. In expectation programming, the aim of the backend inference engine is to directly estimate expected return values of programs, as opposed to approximating their conditional distributions. This distinction, while subtle, allows us to achieve substantial performance improvements over the standard PPS computational pipeline by tailoring computation to the expectation we care about. We realize a particular instance of our expectation programming concept, Expectation Programming in Turing (EPT), by extending the PPS Turing to allow so-called target-aware inference to be run automatically. We then verify the statistical soundness of EPT theoretically, and show that it provides substantial empirical gains in practice.Rethinking Variational Inference for Probabilistic Programs with Stochastic Support
Advances in Neural Information Processing Systems 35 (2022)