Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Black Hole

Lensing of space time around a black hole. At Oxford we study black holes observationally and theoretically on all size and time scales - it is some of our core work.

Credit: ALAIN RIAZUELO, IAP/UPMC/CNRS. CLICK HERE TO VIEW MORE IMAGES.

Prof. Dimitra Rigopoulou

Professor of Astrophysics

Research theme

  • Astronomy and astrophysics

Sub department

  • Astrophysics

Research groups

  • Galaxy formation and evolution
Dimitra.Rigopoulou@physics.ox.ac.uk
Telephone: 01865 (2)73296
Denys Wilkinson Building, room 75419514947
  • About
  • Publications

Excitation of Molecular Hydrogen in Seyferts: NGC 5506 and NGC 3081

The Astrophysical Journal American Astronomical Society 993:2 (2025) 217

Authors:

Daniel E Delaney, Erin KS Hicks, Lulu Zhang, Chris Packham, Ric Davies, Miguel Pereira Santaella, Enrica Bellocchi, Nancy A Levenson, Steph Campbell, David J Rosario, Houda Haidar, Cristina Ramos Almeida, Anelise Audibert, Claudio Ricci, Laura Hermosa Muñoz, Francoise Combes, Almudena Alonso-Herrero, Santiago García-Burillo, Federico Esposito, Ismael García-Bernete, Taro Shimizu, Martin Ward, Omaira Gonzalez Martin, Alvaro Labiano, Dimitra Rigopoulou

Abstract:

We utilize James Webb Space Telescope (JWST) Mid Infrared Instrument (MIRI) integral field unit observations to investigate the behavior and excitation of H2 in the nearby Seyfert galaxies NGC 3081 and NGC 5506, both part of the Galactic Activity, Torus, and Outflow Survey (or GATOS). We compare population levels of the S(1) to S(8) rotational H2 emission lines visible to JWST/MIRI spectroscopy to models assuming local thermodynamic equilibrium (LTE), in order to estimate the column density and thermal scaling of the molecular gas. For the nuclear regions, we incorporate Very Large Telescope Spectrograph for INtegral Field Observations in the Near Infrared (or VLT/SINFONI) K-band observations to estimate population levels for available rovibrational H2 emission lines, and compare the resultant population curves to non-LTE radiative transfer models and shock modeling. We report a differing set of prominent active galactic nuclei (AGN)-driven excitation mechanisms between the two galaxies. For NGC 3081, we find that a non-LTE radiative transfer environment is adequate to explain observations of the nuclear region, indicating that the primary mode in which the AGN transfers excitation energy is likely irradiation. We estimate the extent of AGN photoionization along the ionization bicone to be ≈330 pc. In contrast, for NGC 5506, we find a shock scenario to be a more plausible excitation mechanism, a conclusion bolstered by an observed spatial correlation between higher-energy rotational H2 and [Fe II]5.34μm emission. In addition, we identify potential nuclear H2 outflows resulting from an interaction between the ionization bicone and the rotational disk. By isolating the outflowing component of the H2 emission, we estimate the warm molecular mass outflow rate to be 0.07 M⊙ yr−1.
More details from the publisher
Details from ORA
More details

Shock-driven heating in the circumnuclear star-forming regions of NGC 7582: Insights from JWST NIRSpec and MIRI/MRS spectroscopy

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) (2025) staf1887

Authors:

Oscar Veenema, Niranjan Thatte, Dimitra Rigopoulou, Ismael García-Bernete, Almudena Alonso-Herrero, Anelise Audibert, Enrica Bellocchi, Andrew J Bunker, Steph Campbell, Francoise Combes, Ric I Davies, Daniel Delaney, Fergus Donnan, Federico Esposito, Santiago García-Burillo, Omaira Gonzalez Martin, Laura Hermosa Muñoz, Erin KS Hicks, Sebastian F Hoenig, Nancy A Levenson, Chris Packham, Miguel Pereira-Santaella, Cristina Ramos Almeida, Claudio Ricci, Rogemar A Riffel, David Rosario, Lulu Zhang

Abstract:

Abstract We present combined JWST NIRSpec and MIRI/MRS integral field spectroscopy data of the nuclear and circumnuclear regions of the highly dust obscured Seyfert 2 galaxy NGC 7582, which is part of the sample of AGN in the Galaxy Activity, Torus and Outflow Survey (GATOS). Spatially resolved analysis of the pure rotational H2 lines (S(1)-S(7)) reveals a characteristic power-law temperature distribution in different apertures, with the two prominent southern star-forming regions exhibiting unexpectedly high molecular gas temperatures, comparable to those in the AGN powered nuclear region. We investigate potential heating mechanisms including direct AGN photoionisation, UV fluorescent excitation from young star clusters, and shock excitation. We find that shock heating gives the most plausible explanation, consistent with multiple near- and mid-IR tracers and diagnostics. Using photoionisation models from the PhotoDissociation Region Toolbox, we quantify the ISM conditions in the different regions, determining that the southern star-forming regions have a high density (nH ∼ 105 cm−3) and are irradiated by a moderate UV radiation field (G0 ∼ 103 Habing). Fitting a suite of Paris-Durham shock models to the rotational H2 lines, as well as rovibrational 1-0 S(1), 1-0 S(2), and 2-1 S(1) H2 emission lines, we find that a slow (vs ∼ 10 km/s) C-type shock is likely responsible for the elevated temperatures. Our analysis loosely favours local starburst activity as the driver of the shocks and circumnuclear gas dynamics in NGC 7582, though the possibility of an AGN jet contribution cannot be excluded.
More details from the publisher

Shock-driven heating in the circumnuclear star-forming regions of NGC 7582: Insights from JWST NIRSpec and MIRI/MRS spectroscopy

(2025)

Authors:

Oscar Veenema, Niranjan Thatte, Dimitra Rigopoulou, Ismael García-Bernete, Almudena Alonso-Herrero, Anelise Audibert, Enrica Bellocchi, Andrew J Bunker, Steph Campbell, Francoise Combes, Ric I Davies, Daniel Delaney, Fergus Donnan, Federico Esposito, Santiago García-Burillo, Omaira Gonzalez Martin, Laura Hermosa Muñoz, Erin KS Hicks, Sebastian F Hoenig, Nancy A Levenson, Chris Packham, Miguel Pereira-Santaella, Cristina Ramos Almeida, Claudio Ricci, Rogemar A Riffel, David Rosario, Lulu Zhang
More details from the publisher

The Interstellar Medium in I Zw 18 Seen with JWST/MIRI. II. Warm Molecular Hydrogen and Warm Dust

The Astrophysical Journal American Astronomical Society 993:1 (2025) 84

Authors:

LK Hunt, BT Draine, MG Navarro, A Aloisi, RJ Rickards Vaught, A Adamo, F Annibali, D Calzetti, S Hernandez, BL James, M Mingozzi, R Schneider, M Tosi, B Brandl, MG del Valle-Espinosa, F Donnan, AS Hirschauer, M Meixner, D Rigopoulou

Abstract:

We present JWST/MIRI spectra from the Medium-resolution Spectrometer of I Zw 18, a nearby dwarf galaxy with a metallicity of ∼3% Solar. Here, we investigate warm molecular hydrogen, H2, observed in spectra extracted in ∼120 pc apertures centered on eleven regions of interest. We detect seven H2 rotational lines, some of which are among the weakest ever measured. The H2 population diagrams are fit with local-thermodynamic-equilibrium models and models of photodissociation regions. We also fit the ortho-/para-H2 ratios (OPRs); in three of the six regions for which it was possible to fit the OPR, we find values significantly greater than 3, the maximum value for local thermodynamic equilibrium. To our knowledge, although predicted theoretically, this is the first time that OPR significantly >3 has been measured in interstellar gas. We find that an OPR tends to increase with decreasing H2 column density, consistent with the expected effects of self-shielding in advancing photodissociation fronts. The population diagrams are consistent with H nucleon densities of ∼105 cm−3, and an interstellar radiation field scaling factor, G0, of ∼103. This warm, dense H2 gas coexists with the same highly ionized gas that emits [O IV] and [Ne V]. Emission from T ≳ 50 K dust is detected, including an as-yet-unidentified dust emission feature near 14 μm; possible identification of Al2O3 is discussed. The continuum emission from several regions requires that a considerable fraction of the refractory elements be incorporated in dust. Despite stacking spectra in the SE where H2 is found, no significant emission from polycyclic aromatic hydrocarbons is detected.
More details from the publisher
Details from ORA
More details

The detection of a large-scale ionised outflow in the local CON galaxy Zw049.057

Astronomy & Astrophysics EDP Sciences (2025)

Authors:

CF Wethers, S Aalto, S del Palacio, B Lankhaar, GC Privon, F Stanley, J Gallagher, M Gorski, S König, G Olander, M Sato, R Beswick, F Combes, AS Evans, I Garcia-Bernete, C Henkel, M Imanishi, S Linden, J Mangum, S Muller, Y Nishimura, C Ricci, D Rigopoulou

Abstract:

Current co-evolutionary models of galaxies and their supermassive black holes (SMBHs) almost unanimously predict the existence of a heavily dust-obscured nuclear phase, critical in growing the SMBH and providing feedback to the host galaxy. However, this phase is poorly understood. Compact obscured nuclei (CONs) are relatively common in local (ultra-)luminous infrared galaxies and are the most obscured nuclei known to date, offering the opportunity to study the effects of such a dust-obscured phase on the galaxy. This work presents a case study of the local CON Zw049.057; we study the large-scale features of the galaxy and their connection to the ongoing activity of the central CON. We present new, targeted MUSE observations of the local CON galaxy Zw049.057, which is known to host multiple outflow features within its central few hundred parsecs. By mapping the kinematics of Hα, we analysed the large-scale features of the galaxy. For the first time, we identify a kiloparsec-scale ionised outflow in Zw049.057, traced by Hα emission. Kinematics reveal the outflow to be blueshifted and orientated to the foreground of the stellar disk. The ionisation of this outflow is consistent with shock-heating, which may be related to the presence of a previously identified radio jet in the galaxy.
More details from the publisher

Pagination

  • Current page 1
  • Page 2
  • Page 3
  • Page 4
  • Page 5
  • Page 6
  • Page 7
  • Page 8
  • Page 9
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Giving to Physics
  • Current students
  • Staff intranet