Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
CMP
Credit: Jack Hobhouse

Dr Nicole Robb

Visiting Lecturer

Sub department

  • Condensed Matter Physics
Nicole.Robb@physics.ox.ac.uk
Telephone: 01865 (2)72357
Clarendon Laboratory, room 201
warwick.ac.uk/fac/sci/med/research/biomedical/labs/nrobb/robblab
  • About
  • Publications

Rapid functionalisation and detection of viruses via a novel Ca2+-mediated virus-DNA interaction

Scientific Reports Nature Research 9 (2019) 16219

Authors:

Nicole Robb, Jonathan Taylor, Amy Kent, A Kapanidis, O Pambos, B Gilboa
More details from the publisher
Details from ORA
More details
More details

Real-time analysis of single influenza virus replication complexes reveals large promoter-dependent differences in initiation dynamics

Nucleic Acids Research Oxford University Press (OUP) (2019)

Authors:

Nicole C Robb, Aartjan JW te Velthuis, Ervin Fodor, Achillefs N Kapanidis
More details from the publisher
Details from ORA
More details
More details

Coming together during viral assembly.

Nature reviews. Microbiology 16:12 (2018) 721-721

Authors:

Christof Hepp, Nicole C Robb
More details from the publisher
Details from ORA
More details
More details

Publisher Correction: Precision and accuracy of single-molecule FRET measurements-a multi-laboratory benchmark study.

Nature methods 15:11 (2018) 984-984

Authors:

Björn Hellenkamp, Sonja Schmid, Olga Doroshenko, Oleg Opanasyuk, Ralf Kühnemuth, Soheila Rezaei Adariani, Benjamin Ambrose, Mikayel Aznauryan, Anders Barth, Victoria Birkedal, Mark E Bowen, Hongtao Chen, Thorben Cordes, Tobias Eilert, Carel Fijen, Christian Gebhardt, Markus Götz, Giorgos Gouridis, Enrico Gratton, Taekjip Ha, Pengyu Hao, Christian A Hanke, Andreas Hartmann, Jelle Hendrix, Lasse L Hildebrandt, Verena Hirschfeld, Johannes Hohlbein, Boyang Hua, Christian G Hübner, Eleni Kallis, Achillefs N Kapanidis, Jae-Yeol Kim, Georg Krainer, Don C Lamb, Nam Ki Lee, Edward A Lemke, Brié Levesque, Marcia Levitus, James J McCann, Nikolaus Naredi-Rainer, Daniel Nettels, Thuy Ngo, Ruoyi Qiu, Nicole C Robb, Carlheinz Röcker, Hugo Sanabria, Michael Schlierf, Tim Schröder, Benjamin Schuler, Henning Seidel, Lisa Streit, Johann Thurn, Philip Tinnefeld, Swati Tyagi, Niels Vandenberk, Andrés Manuel Vera, Keith R Weninger, Bettina Wünsch, Inna S Yanez-Orozco, Jens Michaelis, Claus AM Seidel, Timothy D Craggs, Thorsten Hugel

Abstract:

This paper was originally published under standard Springer Nature copyright. As of the date of this correction, the Analysis is available online as an open-access paper with a CC-BY license. No other part of the paper has been changed.
More details from the publisher
More details
More details

Precision and accuracy of single-molecule FRET measurements-a multi-laboratory benchmark study.

Nature methods 15:9 (2018) 669-676

Authors:

Björn Hellenkamp, Sonja Schmid, Olga Doroshenko, Oleg Opanasyuk, Ralf Kühnemuth, Soheila Rezaei Adariani, Benjamin Ambrose, Mikayel Aznauryan, Anders Barth, Victoria Birkedal, Mark E Bowen, Hongtao Chen, Thorben Cordes, Tobias Eilert, Carel Fijen, Christian Gebhardt, Markus Götz, Giorgos Gouridis, Enrico Gratton, Taekjip Ha, Pengyu Hao, Christian A Hanke, Andreas Hartmann, Jelle Hendrix, Lasse L Hildebrandt, Verena Hirschfeld, Johannes Hohlbein, Boyang Hua, Christian G Hübner, Eleni Kallis, Achillefs N Kapanidis, Jae-Yeol Kim, Georg Krainer, Don C Lamb, Nam Ki Lee, Edward A Lemke, Brié Levesque, Marcia Levitus, James J McCann, Nikolaus Naredi-Rainer, Daniel Nettels, Thuy Ngo, Ruoyi Qiu, Nicole C Robb, Carlheinz Röcker, Hugo Sanabria, Michael Schlierf, Tim Schröder, Benjamin Schuler, Henning Seidel, Lisa Streit, Johann Thurn, Philip Tinnefeld, Swati Tyagi, Niels Vandenberk, Andrés Manuel Vera, Keith R Weninger, Bettina Wünsch, Inna S Yanez-Orozco, Jens Michaelis, Claus AM Seidel, Timothy D Craggs, Thorsten Hugel

Abstract:

Single-molecule Förster resonance energy transfer (smFRET) is increasingly being used to determine distances, structures, and dynamics of biomolecules in vitro and in vivo. However, generalized protocols and FRET standards to ensure the reproducibility and accuracy of measurements of FRET efficiencies are currently lacking. Here we report the results of a comparative blind study in which 20 labs determined the FRET efficiencies (E) of several dye-labeled DNA duplexes. Using a unified, straightforward method, we obtained FRET efficiencies with s.d. between ±0.02 and ±0.05. We suggest experimental and computational procedures for converting FRET efficiencies into accurate distances, and discuss potential uncertainties in the experiment and the modeling. Our quantitative assessment of the reproducibility of intensity-based smFRET measurements and a unified correction procedure represents an important step toward the validation of distance networks, with the ultimate aim of achieving reliable structural models of biomolecular systems by smFRET-based hybrid methods.
More details from the publisher
Details from ORA
More details
More details

Pagination

  • Current page 1
  • Page 2
  • Page 3
  • Page 4
  • Page 5
  • Page 6
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet