Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Black Hole

Lensing of space time around a black hole. At Oxford we study black holes observationally and theoretically on all size and time scales - it is some of our core work.

Credit: ALAIN RIAZUELO, IAP/UPMC/CNRS. CLICK HERE TO VIEW MORE IMAGES.

Prof Patrick Roche

Professor of Physics

Research theme

  • Astronomy and astrophysics

Sub department

  • Astrophysics

Research groups

  • Astronomical instrumentation
Pat.Roche@physics.ox.ac.uk
Telephone: 01865 (2)83133
Denys Wilkinson Building, room 765
  • About
  • Research
  • Teaching
  • Publications

A search for the infrared spectroscopic signature of hot Jupiter planets

Monthly Notices of the Royal Astronomical Society 336:2 (2002) 637-642

Authors:

PW Lucas, PF Roche

Abstract:

We present the results of an attempt to detect the hottest 'hot Jupiter' planets directly in the thermal infrared. A simple method based upon high signal-to-noise ratio spectroscopy of the central star at low spectral resolution is described. In the 2-4 μm region the contrast ratio between planet and star is expected to be relatively low and the planetary spectrum should appear as a faint signal on top of the stellar spectrum, distinguished by edges of H2O absorption. No water edges were found to 3σ limits of one part in a few hundred in each case. These upper limits are compared with the irradiated planetary atmosphere models of Barman, Hauschildt & Allard to derive upper limits on the size of the hot Jupiters, which are expected to be somewhat larger than Jupiter. If reasonably strong H2O absorption occurs in these objects then typical upper limits of R < 3 RJup are derived, the precision being limited by the stability of telluric transmission. Only a modest improvement in precision is needed (e.g. with space-based instruments) to reach the range of greatest interest (1 < R < 2 RJup).
More details from the publisher
More details

Infrared Spectroscopy of sub-stellar objects in orion

ORIGINS OF STARS AND PLANETS: THE VLT VIEW (2002) 203-208

Authors:

P Roche, P Lucas, F Allard, P Hauschild
More details from the publisher

The Mineralogy and Magnetism of Star and Planet Formation as Revealed by Mid-Infrared Spectropolarimetry

ESO Astrophysics Symposia Springer Nature (2002) 85-92

Authors:

Christopher M Wright, David K Aitken, Craig H Smith, Patrick F Roche, Rene J Laureijs
More details from the publisher
More details

Infrared polarimetry of the southern massive star-forming region G333.6-0.2

Monthly Notices of the Royal Astronomical Society 327:1 (2001) 233-243

Authors:

T Fujiyoshi, CH Smith, CM Wright, TJT Moore, DK Aitken, PF Roche

Abstract:

We present 8-13 μm spectropolarimetry, and 12- and 2-μm imaging polarimetry of the southern massive star-forming region G333.6-0.2. Spectropolarimetry measurements show that the polarization observed towards the nebula contains a mixture of both absorptive and emissive polarizations. Model fitting to the spectra indicates that the temperature of the mid-infrared emitting dust grains is generally ∼200 K and the optical depth of the absorbing dust at 9.7 μm is ∼ 1.5. Fits are also made to the polarimetry spectra, which show a reasonably constant peak absorptive polarization (∼3.4 per cent at 43°) across the face of the H II region. This absorptive polarization position angle is consistent with that found by the 2-μm imaging polarimetry (38° ± 6°) and is most likely due to the Galactic magnetic field local to G333.6-0.2. When the absorptive polarization is subtracted from the 12-μm polarization image, the emissive polarization pattern that is intrinsic to the star-forming region is revealed. A probable magnetic field configuration implied by the intrinsic polarization suggests star formation initially influenced by the Galactic magnetic field which is eventually perturbed by the star formation process.
More details from the publisher
More details

Infrared spectroscopy of substellar objects in Orion

Monthly Notices of the Royal Astronomical Society 326 (2001) 695-721

Authors:

PF Roche, Philip W Lucas, France Allard, Peter H. Hauschildt
More details from the publisher
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 17
  • Page 18
  • Page 19
  • Page 20
  • Current page 21
  • Page 22
  • Page 23
  • Page 24
  • Page 25
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet