Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Black Hole

Lensing of space time around a black hole. At Oxford we study black holes observationally and theoretically on all size and time scales - it is some of our core work.

Credit: ALAIN RIAZUELO, IAP/UPMC/CNRS. CLICK HERE TO VIEW MORE IMAGES.

Prof Patrick Roche

Professor of Physics

Research theme

  • Astronomy and astrophysics

Sub department

  • Astrophysics

Research groups

  • Astronomical instrumentation
Pat.Roche@physics.ox.ac.uk
Telephone: 01865 (2)83133
Denys Wilkinson Building, room 765
  • About
  • Research
  • Teaching
  • Publications

Cold molecular gas and PAH emission in the nuclear and circumnuclear regions of Seyfert galaxies

Astronomy & Astrophysics EDP Sciences 639 (2020) a43

Authors:

A Alonso-Herrero, M Pereira-Santaella, D Rigopoulou, I García-Bernete, S García-Burillo, AJ Domínguez-Fernández, F Combes, RI Davies, T Díaz-Santos, D Esparza-Arredondo, O González-Martín, A Hernán-Caballero, EKS Hicks, SF Hönig, NA Levenson, C Ramos Almeida, PF Roche, D Rosario
More details from the publisher
Details from ArXiV

High angular resolution ALMA images of dust and molecules in the SN 1987A ejecta

Astrophysical Journal American Astronomical Society 886:1 (2019) 51

Authors:

P Cigan, M Matsuura, HL Gomez, R Indebetouw, Patrick Roche

Abstract:

We present high angular resolution (~80 mas) ALMA continuum images of the SN 1987A system, together with CO J = 2 $\to $ 1, J = 6 $\to $ 5, and SiO J = 5 $\to $ 4 to J = 7 $\to $ 6 images, which clearly resolve the ejecta (dust continuum and molecules) and ring (synchrotron continuum) components. Dust in the ejecta is asymmetric and clumpy, and overall the dust fills the spatial void seen in Hα images, filling that region with material from heavier elements. The dust clumps generally fill the space where CO J = 6 $\to $ 5 is fainter, tentatively indicating that these dust clumps and CO are locationally and chemically linked. In these regions, carbonaceous dust grains might have formed after dissociation of CO. The dust grains would have cooled by radiation, and subsequent collisions of grains with gas would also cool the gas, suppressing the CO J = 6 $\to $ 5 intensity. The data show a dust peak spatially coincident with the molecular hole seen in previous ALMA CO J = 2 $\to $ 1 and SiO J = 5 $\to $ 4 images. That dust peak, combined with CO and SiO line spectra, suggests that the dust and gas could be at higher temperatures than the surrounding material, though higher density cannot be totally excluded. One of the possibilities is that a compact source provides additional heat at that location. Fits to the far-infrared–millimeter spectral energy distribution give ejecta dust temperatures of 18–23 K. We revise the ejecta dust mass to M dust = 0.2–0.4 ${M}_{\odot }$ for carbon or silicate grains, or a maximum of <0.7 ${M}_{\odot }$ for a mixture of grain species, using the predicted nucleosynthesis yields as an upper limit.
More details from the publisher
Details from ORA
More details
Details from ArXiV

Nuclear molecular outflow in the Seyfert galaxy NGC 3227

Astronomy and Astrophysics EDP Sciences 628 (2019) A65

Authors:

A Alonso Herrero, S García-Burillo, Miguel Pereira-Santaella, RI Davies, F Combes, M Vestergaard, SI Raimundo, Andrew Bunker, T Díaz-Santos, P Gandhi, I García-Bernete, EKS Hicks, SF Hönig, LK Hunt, M Imanishi, T Izumi, NA Levenson, W Maciejewski1, C Packham, C Ramos Almeida, C Ricci, Dimitra Rigopoulou, Patrick Roche, D Rosario, M Schartmann, A Usero, MJ Ward

Abstract:

ALMA observations have revealed nuclear dusty molecular disks or tori with characteristic sizes 15−40 pc in the few Seyferts and low -luminosity AGN that have been studied so far. These structures are generally decoupled both morphologically and kinematically from the host galaxy disk. We present ALMA observations of the CO(2–1) and CO(3–2) molecular gas transitions and associated (sub-) millimeter continua of the nearby Seyfert 1.5 galaxy NGC 3227 with angular resolutions 0.085 − 0.21″ (7–15 pc). On large scales, the cold molecular gas shows circular motions as well as streaming motions on scales of a few hundred parsecs that are associated with a large-scale bar. We fit the nuclear ALMA 1.3 mm emission with an unresolved component and an extended component. The 850 μm emission shows at least two extended components, one along the major axis of the nuclear disk, and the other along the axis of the ionization cone. The molecular gas in the central region (1″ ∼ 73 pc) shows several CO clumps with complex kinematics that appears to be dominated by noncircular motions. While we cannot conclusively demonstrate the presence of a warped nuclear disk, we also detected noncircular motions along the kinematic minor axis. They reach line-of-sight velocities of v − vsys = 150 − 200 km s−1. Assuming that the radial motions are in the plane of the galaxy, we interpret them as a nuclear molecular outflow due to molecular gas in the host galaxy that is entrained by the AGN wind. We derive molecular outflow rates of 5 M⊙ yr−1 and 0.6 M⊙ yr−1 at projected distances of up to 30 pc to the northeast and southwest of the AGN, respectively. At the AGN location we estimate a mass in molecular gas of 5 × 105 M⊙ and an equivalent average column density N(H2) = 2 − 3 × 1023 cm−2 in the inner 15 pc. The nuclear CO(2–1) and CO(3–2) molecular gas and submillimeter continuum emission of NGC 3227 do not resemble the classical compact torus. Rather, these emissions extend for several tens of parsecs and appear connected with the circumnuclear ring in the host galaxy disk, as found in other local AGN.
More details from the publisher
Details from ORA
More details
Details from ArXiV

Torus model properties of an ultra-hard X-ray selected sample of Seyfert galaxies

Monthly Notices of the Royal Astronomical Society Oxford University Press 486:4 (2019) 4917-4935

Authors:

I Garcia-Benete, C Ramos Almeida, A Alonso-Herrero, M Ward, JA Acosta-Pulido, M Pereira-Santaella, A Hernan-Caballero, A Asensio Ramos, O Gonzalez-Martin, NA Levenson, S Mateos, FJ Carrera, C Ricci, Patrick Roche, I Marquez, C Packham, J Masegosa, L Fuller

Abstract:

We characterize for the first time the torus properties of an ultra-hard X-ray (14–195 keV) volume-limited (DL < 40 Mpc) sample of 24 Seyfert (Sy) galaxies (BCS40 sample). The sample was selected from the Swift/BAT nine-month catalogue. We use high angular resolution nuclear infrared (IR) photometry and N-band spectroscopy, the CLUMPY torus models and a Bayesian tool to characterize the properties of the nuclear dust. In the case of the Sy1s, we estimate the accretion disc contribution to the subarcsecond resolution nuclear IR SEDs (∼0.4 arcsec) which is, on average, 46 ± 28, 23 ± 13, and 11 ± 5 per cent in the J, H, and K bands, respectively. This indicates that the accretion disc templates that assume a steep fall for longer wavelengths than 1 μm might underestimate its contribution to the near-IR emission. Using both optical (broad versus narrow lines) and X-ray (unabsorbed versus absorbed) classifications, we compare the global posterior distribution of the torus model parameters. We confirm that Sy2s have larger values of the torus covering factor (CT ∼ 0.95) than Sy1s (CT ∼ 0.65) in our volume-limited Seyfert sample. These findings are independent of whether we use an optical or X-ray classification. We find that the torus covering factor remains essentially constant within the errors in our luminosity range and there is no clear dependence with the Eddington ratio. Finally, we find tentative evidence that even an ultra-hard X-ray selection is missing a significant fraction of highly absorbed type 2 sources with very high covering factor tori.
More details from the publisher
Details from ORA
More details
Details from ArXiV

High resolution imaging of the magnetic field in the central parsec of the Galaxy

Planetary and Space Science Elsevier 183 (2018) 104578

Authors:

Patrick Roche, E Lopez Rodriguez, CM Telesco, R Schodel, C Packham

Abstract:

We discuss a high resolution (FWHM∼ 0:45 arcsec) image of the emissive polarization from warm dust in the minispiral in the Galactic Centre and discuss the implications for the magnetic field in the dusty filaments. The image was obtained at a wavelength of 12.5 μm with the CanariCam multimode mid-infrared imager on the Gran Telescopio Canarias. It confirms the results obtained from previous observations but also reveals new details of the polarization structures. In particular, we identify regions of coherent magnetic field emission at position angles of ∼ 45o to the predominantly north–south run of field lines in the Northern Arm which may be related to orbital motions inclined to the general flow of the Northern Arm. The luminous stars that have been identified as bow-shock sources in the Northern Arm do not disrupt or dilute the field but are linked by a coherent field structure, implying that the winds from these objects may push and compress the field but do not overwhelm it. The magnetic field in the low surface brightness regions in the East-West Bar to the south of SgrA* lies along the Bar, but the brighter regions generally have different polarization position angles, suggesting that they are distinct structures. In the region of the Northern Arm sampled here, there is only a weak correlation between the intensity of the emission and the degree of polarization. This is consistent with saturated grain alignment where the degree of polarization depends on geometric effects, including the angle of inclination of the field to the line of sight and superposition of filaments with different field directions, rather than the alignment efficiency.
More details from the publisher
Details from ORA
More details
Details from ArXiV

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 4
  • Page 5
  • Page 6
  • Page 7
  • Current page 8
  • Page 9
  • Page 10
  • Page 11
  • Page 12
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet