Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Insertion of STC into TRT at the Department of Physics, Oxford
Credit: CERN

Dr Eleonora Rossi

Postdoctoral Research Assistant – ATLAS

Research theme

  • Fundamental particles and interactions

Sub department

  • Particle Physics

Research groups

  • ATLAS
eleonora.rossi@physics.ox.ac.uk
  • About
  • Publications

Search for displaced vertices of oppositely charged leptons from decays of long-lived particles in pp collisions at root s=13 TeV with the ATLAS detector

Physics Letters B Elsevier 801 (2019) 135114

Authors:

M Aaboud, G Aad, B Abbott, O Abdinov, B Abeloos, Dk Abhayasinghe, Sh Abidi, Os AbouZeid, Nl Abraham, H Abramowicz, H Abreu, Y Abulaiti, Bs Acharya, S Adachi, L Adamczyk, J Adelman, M Adersberger, A Adiguzel, T Adye, Aa Affolder, Y Afik, C Agheorghiesei, Ja Aguilar-Saavedra, F Ahmadov, G Aielli, S Akatsuka, Tpa Akesson, E Akilli, Av Akimov, Gl Alberghi, J Albert, P Albicocco, MJ Alconada Verzini, S Alderweireldt, M Aleksa, In Aleksandrov, C Alexa, T Alexopoulos, M Alhroob, B Ali, G Alimonti, J Alison, Sp Alkire, C Allaire, Bmm Allbrooke, Bw Allen, Pp Allport, A Aloisio, A Alonso

Abstract:

A search for long-lived particles decaying into an oppositely charged lepton pair, μμ, ee, or eμ, is presented using 32.8fb−1 of pp collision data collected at s=13 TeV by the ATLAS detector at the LHC. Candidate leptons are required to form a vertex, within the inner tracking volume of ATLAS, displaced from the primary pp interaction region. No lepton pairs with an invariant mass greater than 12 GeV are observed, consistent with the background expectations derived from data. The detection efficiencies for generic resonances with lifetimes (cτ) of 100–1000 mm decaying into a dilepton pair with masses between 0.1–1.0 TeV are presented as a function of pT and decay radius of the resonances to allow the extraction of upper limits on the cross sections for theoretical models. The result is also interpreted in a supersymmetric model in which the lightest neutralino, produced via squark–antisquark production, decays into ℓ+ℓ′−ν (ℓ,ℓ′=e, μ) with a finite lifetime due to the presence of R-parity violating couplings. Cross-section limits are presented for specific squark and neutralino masses. For a 700 GeV squark, neutralinos with masses of 50–500 GeV and mean proper lifetimes corresponding to cτ values between 1 mm to 6 m are excluded. For a 1.6 TeV squark, cτ values between 3 mm to 1 m are excluded for 1.3 TeV neutralinos.
More details from the publisher
Details from ORA
More details

Search for long-lived neutral particles produced in $pp$ collisions at $\sqrt{s} = 13$ TeV decaying into displaced hadronic jets in the ATLAS inner detector and muon spectrometer

ArXiv 1911.12575 (2019)
Details from ArXiV

Searches for electroweak production of supersymmetric particles with compressed mass spectra in $\sqrt{s}=13$ TeV $pp$ collisions with the ATLAS detector

ArXiv 1911.12606 (2019)
Details from ArXiV

ATLAS b-jet identification performance and efficiency measurement with tt¯ events in pp collisions at s√=13 TeV

European Physical Journal C: Particles and Fields Springer 79:11 (2019) 970

Abstract:

The algorithms used by the ATLAS Collaboration during Run 2 of the Large Hadron Collider to identify jets containing b-hadrons are presented. The performance of the algorithms is evaluated in the simulation and the efficiency with which these algorithms identify jets containing b-hadrons is measured in collision data. The measurement uses a likelihood-based method in a sample highly enriched in tt¯ events. The topology of the t→Wb decays is exploited to simultaneously measure both the jet flavour composition of the sample and the efficiency in a transverse momentum range from 20 to 600 GeV. The efficiency measurement is subsequently compared with that predicted by the simulation. The data used in this measurement, corresponding to a total integrated luminosity of 80.5 fb−1, were collected in proton–proton collisions during the years 2015–2017 at a centre-of-mass energy s√= 13 TeV. By simultaneously extracting both the efficiency and jet flavour composition, this measurement significantly improves the precision compared to previous results, with uncertainties ranging from 1 to 8% depending on the jet transverse momentum.
More details from the publisher
Details from ORA
More details

Combination of searches for Higgs boson pairs in pp collisions at root s=13 TeV with the ATLAS detector

Physics Letters B Elsevier 800 (2019) 135103

Authors:

G Aad, B Abbott, DC Abbott, James Frost, The ATLAS Collaboration

Abstract:

This letter presents a combination of searches for Higgs boson pair production using up to 36.1 fb−1 of proton–proton collision data at a centre-of-mass energy s=13 TeV recorded with the ATLAS detector at the LHC. The combination is performed using six analyses searching for Higgs boson pairs decaying into the bb¯bb¯, bb¯W+W−, bb¯τ+τ−, W+W−W+W−, bb¯γγ and W+W−γγ final states. Results are presented for non-resonant and resonant Higgs boson pair production modes. No statistically significant excess in data above the Standard Model predictions is found. The combined observed (expected) limit at 95% confidence level on the non-resonant Higgs boson pair production cross-section is 6.9 (10) times the predicted Standard Model cross-section. Limits are also set on the ratio (κλ) of the Higgs boson self-coupling to its Standard Model value. This ratio is constrained at 95% confidence level in observation (expectation) to −5.0<κλ<12.0 (−5.8<κλ<12.0). In addition, limits are set on the production of narrow scalar resonances and spin-2 Kaluza–Klein Randall–Sundrum gravitons. Exclusion regions are also provided in the parameter space of the habemus Minimal Supersymmetric Standard Model and the Electroweak Singlet Model.
More details from the publisher
Details from ORA
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 175
  • Page 176
  • Page 177
  • Page 178
  • Current page 179
  • Page 180
  • Page 181
  • Page 182
  • Page 183
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet