The WEAVE-TwiLight-Survey: Expanding WEAVE’s Reach to Bright and Low-Surface-Density Targets with a Novel Observing Mode
RAS Techniques and Instruments Oxford University Press (OUP) (2025) rzaf060
Abstract:
Abstract Current-day multi-object spectroscopic surveys are often limited in their ability to observe bright stars due to their low surface densities, resulting in increased observational overheads and reduced efficiency. Addressing this, we have developed a novel observing mode for WEAVE (William Herschel Telescope Enhanced Area Velocity Explorer) that enables efficient observations of low-surface-density target fields without incurring additional overheads from calibration exposures. As a pilot for the new mode, we introduce the WEAVE-TwiLight-Survey (WTLS), focusing on bright exoplanet-host stars and their immediate surroundings on the sky. High observational efficiency is achieved by superimposing multiple low-target-density fields and allocating the optical fibres in this configuration. We use a heuristic method to define fields relative to a central guide star, which serves as a reference for their superposition. Suitable guide fibres for each merged configuration are selected using a custom algorithm. Test observations have been carried out, demonstrating the feasibility of the new observing mode. We show that merged field configurations can be observed with WEAVE using the proposed method. The approach minimizes calibration times and opens twilight hours to WEAVE’s operational schedule. WTLS is built upon the new observing mode and sourced from the ESA PLATO long-duration-phase fields. This survey will result in a homogeneous catalogue of ∼6 300 bright stars, including 62 known planet hosts, laying the groundwork for future elemental abundance studies tracing chemical patterns of planetary formation. This new observing mode (WEAVE-Tumble-Less) expands WEAVE’s capabilities to rarely used on-sky time and low-density field configurations without sacrificing efficiency.MOSAIC at the ELT: a unique instrument for the largest ground-based telescope
Proceedings Volume 13096, Ground-based and Airborne Instrumentation for Astronomy X Society of Photo-optical Instrumentation Engineers (2024)