Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Black Hole

Lensing of space time around a black hole. At Oxford we study black holes observationally and theoretically on all size and time scales - it is some of our core work.

Credit: ALAIN RIAZUELO, IAP/UPMC/CNRS. CLICK HERE TO VIEW MORE IMAGES.

Joseph Silk

Emeritus Savilian Professor

Sub department

  • Astrophysics

Research groups

  • Beecroft Institute for Particle Astrophysics and Cosmology
joseph.silk@physics.ox.ac.uk
Telephone: 01865 (2)73300
Denys Wilkinson Building, room 532G
  • About
  • Publications

UNLEASHING POSITIVE FEEDBACK: LINKING THE RATES OF STAR FORMATION, SUPERMASSIVE BLACK HOLE ACCRETION, AND OUTFLOWS IN DISTANT GALAXIES

ASTROPHYSICAL JOURNAL 772:2 (2013) ARTN 112
More details from the publisher

Cross-presentation of tumour antigens by human induced pluripotent stem cell-derived CD141(+)XCR1+ dendritic cells.

Gene Ther 19:10 (2012) 1035-1040

Authors:

KM Silk, JD Silk, N Ichiryu, TJ Davies, KF Nolan, AJ Leishman, L Carpenter, SM Watt, V Cerundolo, PJ Fairchild

Abstract:

Monocyte-derived dendritic cells (moDC) have been widely used in cancer immunotherapy but show significant donor-to-donor variability and low capacity for the cross-presentation of tumour-associated antigens (TAA) to CD8(+) T cells, greatly limiting the success of this approach. Given recent developments in induced pluripotency and the relative ease with which induced pluripotent stem (iPS) cell lines may be generated from individuals, we have succeeded in differentiating dendritic cells (DC) from human leukocyte antigen (HLA)-A(*)0201(+) iPS cells (iPS cell-derived DC (ipDC)), using protocols compliant with their subsequent clinical application. Unlike moDC, a subset of ipDC was found to coexpress CD141 and XCR1 that have been shown previously to define the human equivalent of mouse CD8α(+) DC, in which the capacity for cross-presentation has been shown to reside. Accordingly, ipDC were able to cross-present the TAA, Melan A, to a CD8(+) T-cell clone and stimulate primary Melan A-specific responses among naïve T cells from an HLA-A(*)0201(+) donor. Given that CD141(+)XCR1(+) DC are present in peripheral blood in trace numbers that preclude their clinical application, the ability to generate a potentially unlimited source from iPS cells offers the possibility of harnessing their capacity for cross-priming of cytotoxic T lymphocytes for the induction of tumour-specific immune responses.
More details from the publisher
More details

The resolved stellar population in 50 regions of M83 from HST/WFC3 early release science observations

Astrophysical Journal 753:1 (2012)

Authors:

H Kim, BC Whitmore, R Chandar, A Saha, CC Kaleida, M Mutchler, SH Cohen, D Calzetti, RW O'Connell, RA Windhorst, B Balick, HE Bond, M Carollo, MJ Disney, MA Dopita, JA Frogel, DNB Hall, JA Holtzman, RA Kimble, PJ McCarthy, F Paresce, JI Silk, JT Trauger, AR Walker, ET Young

Abstract:

We present a multi-wavelength photometric study of 15,000 resolved stars in the nearby spiral galaxy M83 (NGC5236, D = 4.61Mpc) based on Hubble Space Telescope Wide Field Camera 3 observations using four filters:F336W, F438W, F555W, and F814W. We select 50 regions (an average size of 260pc by 280pc) in the spiral arm and inter-arm areas of M83 and determine the age distribution of the luminous stellar populations in each region. This is accomplished by correcting for extinction toward each individual star by comparing its colors with predictions from stellar isochrones. We compare the resulting luminosity-weighted mean ages of the luminous stars in the 50 regions with those determined from several independent methods, including the number ratio of red-to-blue supergiants, morphological appearance of the regions, surface brightness fluctuations, and the ages of clusters in the regions. We find reasonably good agreement between these methods. We also find that young stars are much more likely to be found in concentrated aggregates along spiral arms, while older stars are more dispersed. These results are consistent with the scenario that star formation is associated with the spiral arms, and stars form primarily in star clusters and then disperse on short timescales to form the field population. The locations of Wolf-Rayet stars are found to correlate with the positions of many of the youngest regions, providing additional support for our ability to accurately estimate ages. We address the effects of spatial resolution on the measured colors, magnitudes, and age estimates. While individual stars can occasionally show measurable differences in the colors and magnitudes, the age estimates for entire regions are only slightly affected. © 2012. The American Astronomical Society. All rights reserved.
More details from the publisher
More details

Blowing cold flows away: the impact of early AGN activity on the formation of a brightest cluster galaxy progenitor

ArXiv 1206.5838 (2012)

Authors:

Yohan Dubois, Christophe Pichon, Julien Devriendt, Joseph Silk, Martin Haehnelt, Taysun Kimm, Adrianne Slyz

Abstract:

Supermassive black holes (BH) are powerful sources of energy that are already in place at very early epochs of the Universe (by z=6). Using hydrodynamical simulations of the formation of a massive M_vir=5 10^11 M_sun halo by z=6 (the most massive progenitor of a cluster of M_vir=2 10^15 M_sun at z=0), we evaluate the impact of Active Galactic Nuclei (AGN) on galaxy mass content, BH self-regulation, and gas distribution inside this massive halo. We find that SN feedback has a marginal influence on the stellar structure, and no influence on the mass distribution on large scales. In contrast, AGN feedback alone is able to significantly alter the stellar-bulge mass content by quenching star formation when the BH is self-regulating, and by depleting the cold gas reservoir in the centre of the galaxy. The growth of the BH proceeds first by a rapid Eddington-limited period fed by direct cold filamentary infall. When the energy delivered by the AGN is sufficiently large to unbind the cold gas of the bulge, the accretion of gas onto the BH is maintained both by smooth gas inflow and clump migration through the galactic disc triggered by merger-induced torques. The feedback from the AGN has also a severe consequence on the baryon mass content within the halo, producing large-scale hot superwinds, able to blow away some of the cold filamentary material from the centre and reduce the baryon fraction by more than 30 per cent within the halo's virial radius. Thus in the very young universe, AGN feedback is likely to be a key process, shaping the properties of the most massive galaxies.
Details from ArXiV
More details from the publisher
Details from ORA
More details

The size evolution of passive galaxies: Observations from the wide-field camera 3 early release science program

Astrophysical Journal 749:1 (2012)

Authors:

RE Ryan, PJ McCarthy, SH Cohen, H Yan, NP Hathi, AM Koekemoer, MJ Rutkowski, MR Mechtley, RA Windhorst, RW O'Connell, B Balick, HE Bond, H Bushouse, D Calzetti, RM Crockett, M Disney, MA Dopita, JA Frogel, DNB Hall, JA Holtzman, S Kaviraj, RA Kimble, J MacKenty, M Mutchler, F Paresce, A Saha, JI Silk, J Trauger, AR Walker, BC Whitmore, E Young

Abstract:

We present the size evolution of passively evolving galaxies at z 2 identified in Wide-Field Camera 3 imaging from the Early Release Science program. Our sample was constructed using an analog to the passive BzK galaxy selection criterion, which isolates galaxies with little or no ongoing star formation at z ≳ 1.5. We identify 30 galaxies in 40arcmin2 to H < 25mag. By fitting the 10-band Hubble Space Telescope photometry from 0.22 μm ≲ λobs ≲ 1.6 μm with stellar population synthesis models, we simultaneously determine photometric redshift, stellar mass, and a bevy of other population parameters. Based on the six galaxies with published spectroscopic redshifts, we estimate a typical redshift uncertainty of 0.033(1 + z). We determine effective radii from Sérsic profile fits to the H-band image using an empirical point-spread function. By supplementing our data with published samples, we propose a mass-dependent size evolution model for passively evolving galaxies, where the most massive galaxies (M * 1011 M) undergo the strongest evolution from z 2 to the present. Parameterizing the size evolution as (1 + z)-α, we find a tentative scaling of α (- 0.6 0.7) + (0.9 0.4)log (M */109 M), where the relatively large uncertainties reflect the poor sampling in stellar mass due to the low numbers of high-redshift systems. We discuss the implications of this result for the redshift evolution of the M *-Re relation for red galaxies. © 2012. The American Astronomical Society All rights reserved.
More details from the publisher
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 10
  • Page 11
  • Page 12
  • Page 13
  • Current page 14
  • Page 15
  • Page 16
  • Page 17
  • Page 18
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet