Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Black Hole

Lensing of space time around a black hole. At Oxford we study black holes observationally and theoretically on all size and time scales - it is some of our core work.

Credit: ALAIN RIAZUELO, IAP/UPMC/CNRS. CLICK HERE TO VIEW MORE IMAGES.

Joseph Silk

Emeritus Savilian Professor

Sub department

  • Astrophysics

Research groups

  • Beecroft Institute for Particle Astrophysics and Cosmology
joseph.silk@physics.ox.ac.uk
Telephone: 01865 (2)73300
Denys Wilkinson Building, room 532G
  • About
  • Publications

The current status of galaxy formation

RESEARCH IN ASTRONOMY AND ASTROPHYSICS 12:8 (2012) 917-946

Authors:

Joseph Silk, Gary A Mamon
More details from the publisher

Triggered star formation in the inner filament of Centaurus A

Monthly Notices of the Royal Astronomical Society (2012)

Authors:

RM Crockett, SS Shabala, S Kaviraj, V Antonuccio-Delogu, J Silk, M Mutchler, RW O'Connell, M Rejkuba, BC Whitmore, RA Windhorst
More details from the publisher
More details

Star formation in 30 Doradus

Astrophysical Journal 739:1 (2011)

Authors:

G De Marchi, F Paresce, N Panagia, G Beccari, L Spezzi, M Sirianni, M Andersen, M Mutchler, B Balick, MA Dopita, JA Frogel, BC Whitmore, H Bond, D Calzetti, C Marcella Carollo, MJ Disney, DNB Hall, J Holtzman, RA Kimble, PJ McCarthy, RW O'Connell, A Saha, JI Silk, JT Trauger, AR Walker, RA Windhorst, ET Young

Abstract:

Using observations obtained with the Wide-Field Camera 3 on board the Hubble Space Telescope, we have studied the properties of the stellar populations in the central regions of 30Dor in the Large Magellanic Cloud. The observations clearly reveal the presence of considerable differential extinction across the field. We characterize and quantify this effect using young massive main-sequence stars to derive a statistical reddening correction for most objects in the field. We then search for pre-main-sequence (PMS) stars by looking for objects with a strong (>4σ) Hα excess emission and find about 1150 of them over the entire field. Comparison of their location in the Hertzsprung-Russell diagram with theoretical PMS evolutionary tracks for the appropriate metallicity reveals that about one-third of these objects are younger than ∼4Myr, compatible with the age of the massive stars in the central ionizing cluster R136, whereas the rest have ages up to ∼30Myr, with a median age of ∼12Myr. This indicates that star formation has proceeded over an extended period of time, although we cannot discriminate between an extended episode and a series of short and frequent bursts that are not resolved in time. While the younger PMS population preferentially occupies the central regions of the cluster, older PMS objects are more uniformly distributed across the field and are remarkably few at the very center of the cluster. We attribute this latter effect to photo-evaporation of the older circumstellar disks caused by the massive ionizing members of R136. © 2011. The American Astronomical Society. All rights reserved.
More details from the publisher
More details

Galaxy Zoo: dust and molecular gas in early-type galaxies with prominent dust lanes

ArXiv 1107.5306 (2011)

Authors:

Sugata Kaviraj, Yuan-Sen Ting, Martin Bureau, Stanislav S Shabala, R Mark Crockett, Joseph Silk, Chris Lintott, Arfon Smith, William C Keel, Karen L Masters, Kevin Schawinski, Steven P Bamford

Abstract:

We study dust and associated molecular gas in 352 nearby early-type galaxies (ETGs) with prominent dust lanes. 65% of these `dusty ETGs' (D-ETGs) are morphologically disturbed, suggesting a merger origin. This is consistent with the D-ETGs residing in lower density environments compared to the controls drawn from the general ETG population. 80% of D-ETGs inhabit the field (compared to 60% of the controls) and <2% inhabit clusters (compared to 10% of the controls). Compared to the controls, D-ETGs exhibit bluer UV-optical colours (indicating enhanced star formation) and an AGN fraction that is more than an order of magnitude greater (indicating higher incidence of nuclear activity). The clumpy dust mass residing in large-scale features is estimated, using the SDSS r-band images, to be 10^{4.5}-10^{6.5} MSun. A comparison to the total (clumpy + diffuse) dust masses- calculated using the far-IR fluxes of 15% of the D-ETGs that are detected by the IRAS- indicates that only ~20% of the dust resides in these large-scale features. The dust masses are several times larger than the maximum value expected from stellar mass loss, ruling out an internal origin. The dust content shows no correlation with the blue luminosity, indicating that it is not related to a galactic scale cooling flow. No correlation is found with the age of the recent starburst, suggesting that the dust is accreted directly in the merger rather than being produced in situ by the triggered star formation. Using molecular gas-to-dust ratios of ETGs in the literature we estimate that the median current and initial molecular gas fraction are ~1.3% and ~4%, respectively. Recent work suggests that the merger activity in nearby ETGs largely involves minor mergers (mass ratios between 1:10 and 1:4). If the IRAS-detected D-ETGs form via this channel, then the original gas fractions of the accreted satellites are 20%-44%. [Abridged]
Details from ArXiV
More details from the publisher
More details

Galaxy Zoo: dust lane early-type galaxies are tracers of recent, gas-rich minor mergers

ArXiv 1107.531 (2011)

Authors:

Stanislav S Shabala, Yuan-Sen Ting, Sugata Kaviraj, Chris Lintott, R Mark Crockett, Joseph Silk, Marc Sarzi, Kevin Schawinski, Steven P Bamford, Edd Edmondson

Abstract:

We present the second of two papers concerning the origin and evolution of local early-type galaxies exhibiting dust features. We use optical and radio data to examine the nature of active galactic nucleus (AGN) activity in these objects, and compare these with a carefully constructed control sample. We find that dust lane early-type galaxies are much more likely to host emission-line AGN than the control sample galaxies. Moreover, there is a strong correlation between radio and emission-line AGN activity in dust lane early-types, but not the control sample. Dust lane early-type galaxies show the same distribution of AGN properties in rich and poor environments, suggesting a similar triggering mechanism. By contrast, this is not the case for early-types with no dust features. These findings strongly suggest that dust lane early-type galaxies are starburst systems formed in gas-rich mergers. Further evidence in support of this scenario is provided by enhanced star formation and black hole accretion rates in these objects. Dust lane early-types therefore represent an evolutionary stage between starbursting and quiescent galaxies. In these objects, the AGN has already been triggered but has not as yet completely destroyed the gas reservoir required for star formation.
Details from ArXiV
More details from the publisher
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 15
  • Page 16
  • Page 17
  • Page 18
  • Current page 19
  • Page 20
  • Page 21
  • Page 22
  • Page 23
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet