Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Black Hole

Lensing of space time around a black hole. At Oxford we study black holes observationally and theoretically on all size and time scales - it is some of our core work.

Credit: ALAIN RIAZUELO, IAP/UPMC/CNRS. CLICK HERE TO VIEW MORE IMAGES.

Joseph Silk

Emeritus Savilian Professor

Sub department

  • Astrophysics

Research groups

  • Beecroft Institute for Particle Astrophysics and Cosmology
joseph.silk@physics.ox.ac.uk
Telephone: 01865 (2)73300
Denys Wilkinson Building, room 532G
  • About
  • Publications

Scale-dependent bias from the reconstruction of non-Gaussian distributions

PHYSICAL REVIEW D 83:8 (2011) ARTN 083504

Authors:

Sirichai Chongchitnan, Joseph Silk
More details from the publisher

The Sunyaev-Zel'dovich effect due to hyperstarburst galaxy winds

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY 412:2 (2011) 905-910

Authors:

Barnaby Rowe, Joseph Silk
More details from the publisher

The specific star formation rate of high redshift galaxies: the case for two modes of star formation

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY 410:1 (2011) L42-L46

Authors:

Sadegh Khochfar, Joseph Silk
More details from the publisher

Light WIMPs in the Sun: Constraints from helioseismology

Physical Review D - Particles, Fields, Gravitation and Cosmology 82:10 (2010)

Authors:

DT Cumberbatch, JA Guzik, J Silk, LS Watson, SM West

Abstract:

We calculate solar models including dark matter (DM) weakly interacting massive particles (WIMPs) of mass 5-50 GeV and test these models against helioseismic constraints on sound speed, convection-zone depth, convection-zone helium abundance, and small separations of low-degree p-modes. Our main conclusion is that both direct detection experiments and particle accelerators may be complemented by using the Sun as a probe for WIMP DM particles in the 5-50 GeV mass range. The DM most sensitive to this probe has suppressed annihilations and a large spin-dependent elastic scattering cross section. For the WIMP cross section parameters explored here, the lightest WIMP masses <10 GeV are ruled out by constraints on core sound speed and low-degree frequency spacings. For WIMP masses 30-50 GeV, the changes to the solar structure are confined to the inner 4% of the solar radius and so do not significantly affect the solar p-modes. Future helioseismology observations, most notably involving g-modes, and future solar neutrino experiments may be able to constrain the allowable DM parameter space in a mass range that is of current interest for direct detection. © 2010 The American Physical Society.
More details from the publisher
More details

The luminosity, mass, and age distributions of compact star clusters in M83 based on Hubble Space Telescope/Wide Field Camera 3 observations

Astrophysical Journal 719:1 (2010) 966-978

Authors:

R Chandar, BC Whitmore, H Kim, C Kaleida, M Mutchler, D Calzetti, A Saha, R O'Connell, B Balick, H Bond, M Carollo, M Disney, MA Dopita, JA Frogel, D Hall, JA Holtzman, RA Kimble, P McCarthy, F Paresc, J Silk, J Trauger, AR Walker, RA Windhorst, E Young

Abstract:

The newly installed Wide Field Camera 3 (WFC3) on the Hubble Space Telescope has been used to obtain multiband images of the nearby spiral galaxy M83. These new observations are the deepest and highest resolution images ever taken of a grand-design spiral, particularly in the near-ultraviolet, and allow us to better differentiate compact star clusters from individual stars and to measure the luminosities of even faint clusters in the U band. We find that the luminosity function (LF) for clusters outside of the very crowded starburst nucleus can be approximated by a power law, dN/dL ∝ Lα, with α =-2.04 ± 0.08, down to MV ≈-5.5. We test the sensitivity of the LF to different selection techniques, filters, binning, and aperture correction determinations, and find that none of these contribute significantly to uncertainties in α. We estimate ages and masses for the clusters by comparing their measured UBVI, Hα colors with predictions from single stellar population models. The age distribution of the clusters can be approximated by a power law, dN/dτ ∝ τγ, with γ =-0.9 ± 0.2, for M ≳ few × 103 M⊙ and τ ≲ 4 × 108 yr. This indicates that clusters are disrupted quickly, with ≈80%-90% disrupted each decade in age over this time. The mass function of clusters over the same M-τ range is a power law, dN/dM ∝ Mβ, with β =-1.94 ± 0.16, and does not have bends or show curvature at either high or low masses. Therefore, we do not find evidence for a physical upper mass limit, MC, or for the earlier disruption of lower mass clusters when compared with higher mass clusters, i.e., mass-dependent disruption. We briefly discuss these implications for the formation and disruption of the clusters. © 2010. The American Astronomical Society. All rights reserved.
More details from the publisher
More details
Details from ArXiV

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 21
  • Page 22
  • Page 23
  • Page 24
  • Current page 25
  • Page 26
  • Page 27
  • Page 28
  • Page 29
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet