Super-SNID : an expanded set of SNID classes and templates for the new era of wide-field surveys
(2025)
Super-SNID: An Expanded Set of SNID Classes and Templates for the New Era of Wide-field Surveys
Research Notes of the American Astronomical Society American Astronomical Society 9:4 (2025) 78
Abstract:
We present an expanded template library for the supernova identification (SNID) software, along with updated source files that make it easy to merge our templates—and other major SNID libraries—into the base code. This expansion, dubbed “Super-SNID,” increases the number of spectra for under-represented supernova classes (e.g., SNe Ia-02cx, Ibn) and adds new classes (e.g., SLSNe, TDEs, LFBOTs). Super-SNID includes 841 spectral templates for 161 objects, primarily from the Public ESO Spectroscopic Survey of Transient Objects Data Releases 1–4. The library is available on GitHub with simple installation instructions.Discovery and Extensive Follow-up of SN 2024ggi, a Nearby Type IIP Supernova in NGC 3621
The Astrophysical Journal American Astronomical Society 983:1 (2025) 86
Abstract:
We present the discovery and early observations of the nearby Type II supernova (SN) 2024ggi in NGC 3621 at 6.64 ± 0.3 Mpc. The SN was caught 5.8−2.9+1.9 hr after its explosion by the ATLAS survey. Early-phase, high-cadence, and multiband photometric follow-up was performed by the Kilonova Finder (Kinder) project, collecting over 1000 photometric data points within 1 week. The combined o- and r-band light curves show a rapid rise of 3.3 mag in 13.7 hr, much faster than SN 2023ixf (another nearby and well-observed SN II). Between 13.8 and 18.8 hr after explosion, SN 2024ggi became bluer, with u − g color dropping from 0.53 to 0.15 mag. The rapid blueward evolution indicates a wind shock breakout (SBO) scenario. No hour-long brightening expected for the SBO from a bare stellar surface was detected during our observations. The classification spectrum, taken 17 hr after the SN explosion, shows flash features of high-ionization species such as Balmer lines, He i, C iii, and N iii. Detailed light-curve modeling provides critical insights into the circumstellar material (CSM). Our favored model has an explosion energy of 2 × 1051 erg, a mass-loss rate of 10−3 M⊙ yr−1 (with an assumed 10 km s−1 wind), and a confined CSM radius of 6 × 1014 cm. The corresponding CSM mass is 0.4 M⊙. Comparisons with SN 2023ixf highlight that SN 2024ggi has a less dense confined CSM, resulting in a faster rise and fainter UV flux. Citizen astronomer collaboration and extensive data are essential for SBO searches and detailed SN characterizations.A study in scarlet
Astronomy & Astrophysics EDP Sciences 695 (2025) a43
A study in scarlet
Astronomy & Astrophysics EDP Sciences 695 (2025) a42