Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Black Hole

Lensing of space time around a black hole. At Oxford we study black holes observationally and theoretically on all size and time scales - it is some of our core work.

Credit: ALAIN RIAZUELO, IAP/UPMC/CNRS. CLICK HERE TO VIEW MORE IMAGES.

Professor Stephen Smartt CBE FRS MRIA

Professor of Astrophysics

Research theme

  • Astronomy and astrophysics

Sub department

  • Astrophysics

Research groups

  • Hintze Centre for Astrophysical Surveys
  • Pulsars, transients and relativistic astrophysics
  • Rubin-LSST
stephen.smartt@physics.ox.ac.uk
Telephone: 01865273405
Denys Wilkinson Building, room 714
  • About
  • Publications

SOXS NIR: optomechanical integration and alignment, optical performance verification before full instrument assembly

Proceedings of SPIE--the International Society for Optical Engineering SPIE, the international society for optics and photonics 13096 (2024) 130962t-130962t-15

Authors:

M Genoni, M Aliverti, G Pariani, L Oggioni, F Vitali, F D' Alessio, P D' Avanzo, S Campana, M Munari, R Zanmar Sanchez, A Scaudo, M Landoni, D Young, S Scuderi, P Schipani, M Riva, R Claudi, K Radhakrishnan, F Battaini, A Rubin, A Baruffolo, G Capasso, R Cosentino, O Hershko, H Kuncarayakti, G Pignata, S Ben-Ami, A Brucalassi, J Achren, JA Araiza-Durán, I Arcavi, L Asquini, R Bruch, E Capellaro, M Colapietro, M Della Valle, M De Pascale, R Di Benedetto, S D'Orsi, A Gal-Yam, M Hernandez Díaz, J Kotilainen, G Li Causi, L Marty, S Mattila, M Rappaport, D Ricci, B Salasnich, S Smartt, M Stritzinger, H Ventura
More details from the publisher

The integration of the SOXS control electronics towards the PAE

Proceedings of SPIE--the International Society for Optical Engineering SPIE, the international society for optics and photonics 13096 (2024) 130962w-130962w-7

Authors:

M Colapietro, S D'Orsi, G Capasso, S Savarese, P Schipani, L Marty, R Zanmar Sanchez, M Aliverti, F Battaini, S Di Filippo, K Radhakrishnan, D Ricci, B Salasnich, S Campana, R Claudi, JA Araiza-Durán, A Baruffolo, S Ben-Ami, A Bichkovsky, A Brucalassi, R Cosentino, F D'Alessio, P D'Avanzo, R Di Benedetto, M Genoni, O Hershko, H Kuncarayakti, L Lessio, E Martinetti, A Miccichè, G Nicotra, G Pignata, A Rubin, S Scuderi, F Vitali, J Achrén, I Arcavi, L Asquini, R Bruch, E Cappellaro, M Della Valle, A Gal-Yam, M Hernandez Díaz, J Kotilainen, M Landoni, G Li Causi, S Mattila, M Munari, H Pérez Ventura, M Rappaport, M Riva, S Smartt, M Stritzinger, D Young
More details from the publisher

Walking with SOXS towards the transient sky

Proceedings of SPIE--the International Society for Optical Engineering SPIE, the international society for optics and photonics 13096 (2024) 130961t-130961t-10

Authors:

P Schipani, S Campana, R Claudi, M Aliverti, A Baruffolo, S Ben-Ami, G Capasso, M Colapietro, R Cosentino, F D'Alessio, P D'Avanzo, M Genoni, O Hershko, H Kuncarayakti, M Landoni, M Munari, G Pignata, K Radhakrishnan, D Ricci, A Rubin, S Scuderi, F Vitali, D Young, M Accardo, J Achrén, JA Araiza-Durán, I Arcavi, L Asquini, F Battaini, A Bichkovsky, A Brucalassi, R Bruch, L Cabona, E Cappellaro, M Della Valle, S Di Filippo, R Di Benedetto, S D'Orsi, A Gal-Yam, M Hernandez, D Ives, H-U Kaeufl, J Kotilainen, G Li Causi, L Lessio, L Marty, S Mattila, L Mehrgan, L Pasquini, E Pompei, M Rappaport, M Riva, B Salasnich, S Savarese, I Saviane, M Schöller, A Silber, S Smartt, R Zanmar Sanchez, M Stritzinger, A Sulich, H Ventura
More details from the publisher

What is your favorite transient event? SOXS is almost ready to observe!

Proceedings of SPIE--the International Society for Optical Engineering SPIE, the international society for optics and photonics 13096 (2024) 1309673-1309673-16

Authors:

Kalyan Kumar Radhakrishnan Santhakumari, Federico Battaini, Simone Di Filippo, Silvio Di Rosa, Lorenzo Cabona, Riccardo Claudi, Luigi Lessio, Marco Dima, David Young, Marco Landoni, Mirko Colapietro, Sergio D'Orsi, Matteo Aliverti, Matteo Genoni, Matteo Munari, Ricardo Zanmar Sánchez, Fabrizio Vitali, Davide Ricci, Pietro Schipani, Sergio Campana, Jani Achrén, José Araiza-Durán, Iair Arcavi, Andrea Baruffolo, Sagi Ben-Ami, Alex Bichkovsky, Anna Brucalassi, Rachel Bruch, Giulio Capasso, Enrico Cappellaro, Rosario Cosentino, Francesco D'Alessio, Paolo D'Avanzo, Massimo Della Valle, Rosario Di Benedetto, Avishay Gal-Yam, Marcos Hernandez Diaz, Ofir Hershko, Jari Kotilainen, Hanindyo Kuncarayakti, Gianluca Li Causi, Luca Marafatto, Eugenio Martinetti, Laurent Marty, Seppo Mattila, Antonio Miccichè, Gaetano Nicotra, Luca Oggioni, Hector Perez Ventura, Giorgio M Pariani, Giuliano Pignata, Michael Rappaport, Marco Riva, Adam Rubin, Bernardo Salasnich, Salvatore Savarese, Salvatore Scuderi, Steven Smartt, Maximilian Stritzinger
More details from the publisher

Training a convolutional neural network for real–bogus classification in the ATLAS survey

RAS Techniques and Instruments Oxford University Press 3:1 (2024) 385-399

Authors:

JG Weston, KW Smith, SJ Smartt, JL Tonry, HF Stevance

Abstract:

We present a convolutional neural network (CNN) for use in the real–bogus classification of transient detections made by the Asteroid Terrestrial-impact Last Alert System (ATLAS) and subsequent efforts to improve performance since initial development. In transient detection surveys, the number of alerts made outstrips the capacity for human scanning, necessitating the use of machine learning aids to reduce the number of false positives presented to annotators. We take a sample of recently annotated data from each of the three operating ATLAS telescope with 340 000 real (known transients) and 1030 000 bogus detections per model. We retrained the CNN architecture with these data specific to each ATLAS unit, achieving a median false positive rate (FPR) of 0.72 per cent for a 1.00 per cent missed detection rate. Further investigations indicate that if we reduce the input image size it results in increased FPR. Finally architecture adjustments and comparisons to contemporary CNNs indicate that our retrained classifier is providing an optimal FPR. We conclude that the periodic retraining and readjustment of classification models on survey data can yield significant improvements as data drift arising from changes in the optical and detector performance can lead to new features in the model and subsequent deteriorations in performance.
More details from the publisher
Details from ORA
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 6
  • Page 7
  • Page 8
  • Page 9
  • Current page 10
  • Page 11
  • Page 12
  • Page 13
  • Page 14
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet