Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
  • Support
Menu
CMP
Credit: Jack Hobhouse

Dr Sumin Lim Sumin Lim

Postdoctoral Research Assistant

Sub department

  • Condensed Matter Physics

Research groups

  • Quantum spin dynamics
sumin.lim@physics.ox.ac.uk
Clarendon Laboratory, room 252.1
  • About
  • Publications

Variational quantum eigensolver for closed-shell molecules with non-bosonic corrections.

Physical chemistry chemical physics : PCCP 26:10 (2024) 8390-8396

Authors:

Kyungmin Kim, Sumin Lim, Kyujin Shin, Gwonhak Lee, Yousung Jung, Woomin Kyoung, June-Koo Kevin Rhee, Young Min Rhee

Abstract:

The realization of quantum advantage with noisy-intermediate-scale quantum (NISQ) machines has become one of the major challenges in computational sciences. Maintaining coherence of a physical system with more than ten qubits is a critical challenge that motivates research on compact system representations to reduce algorithm complexity. Toward this end, the variational quantum eigensolver (VQE) used to perform quantum simulations is considered to be one of the most promising algorithms for quantum chemistry in the NISQ era. We investigate reduced mapping of one spatial orbital to a single qubit to analyze the ground state energy in a way that the Pauli operators of qubits are mapped to the creation/annihilation of singlet pairs of electrons. To include the effect of non-bosonic (or non-paired) excitations, we introduce a simple correction scheme in the electron correlation model approximated by the geometrical mean of the bosonic (or paired) terms. Employing it in a VQE algorithm, we assess ground state energies of H2O, N2, and Li2O in good agreement with full configuration interaction (FCI) models respectively, using only 6, 8, and 12 qubits with quantum gate depths proportional to the squares of the qubit counts. With the adopted seniority-zero approximation that uses only one half of the qubit counts of a conventional VQE algorithm, we find that our non-bosonic correction method reaches reliable quantum chemistry simulations at least for the tested systems.
More details from the publisher

Fault-tolerant qubit encoding using a spin-7/2 qudit

Physical Review A American Physical Society 108 (2023) 062403

Authors:

Sumin Lim, Junjie Liu, Arzhang Ardavan

Abstract:

The implementation of error correction protocols is a central challenge in the development of practical quantum information technologies. Recently, multi-level quantum resources such as harmonic oscillators and qudits have attracted interest in this context because they offer the possibility of additional Hilbert space dimensions in a spatially compact way. Here we propose a quantum memory, implemented on a spin-7/2 nucleus hyperfine-coupled to an electron spin-1/2 qubit, which provides first order X, Y and Z error correction using significantly fewer quantum resources than the equivalently effective qubit-based protocols. Our encoding may be efficiently implemented in existing experimentally realised molecular electron-nuclear quantum spin systems. The strategy can be extended to higher-order error protection on higher-spin nuclei.
More details from the publisher
Details from ORA
More details

Slow oxidation of magnetite nanoparticles elucidates the limits of the Verwey transition.

Nature communications 12:1 (2021) 6356

Authors:

Taehun Kim, Sangwoo Sim, Sumin Lim, Midori Amano Patino, Jaeyoung Hong, Jisoo Lee, Taeghwan Hyeon, Yuichi Shimakawa, Soonchil Lee, J Paul Attfield, Je-Geun Park

Abstract:

Magnetite (Fe3O4) is of fundamental importance for the Verwey transition near TV = 125 K, below which a complex lattice distortion and electron orders occur. The Verwey transition is suppressed by chemical doping effects giving rise to well-documented first and second-order regimes, but the origin of the order change is unclear. Here, we show that slow oxidation of monodisperse Fe3O4 nanoparticles leads to an intriguing variation of the Verwey transition: an initial drop of TV to a minimum at 70 K after 75 days and a followed recovery to 95 K after 160 days. A physical model based on both doping and doping-gradient effects accounts quantitatively for this evolution between inhomogeneous to homogeneous doping regimes. This work demonstrates that slow oxidation of nanoparticles can give exquisite control and separation of homogeneous and inhomogeneous doping effects on the Verwey transition and offers opportunities for similar insights into complex electronic and magnetic phase transitions in other materials.
More details from the publisher

Correction to Microscopic States and the Verwey Transition of Magnetite Nanocrystals Investigated by Nuclear Magnetic Resonance.

Nano letters 18:7 (2018) 4631

Authors:

Sumin Lim, Baeksoon Choi, Sang Young Lee, Soonchil Lee, Ho-Hyun Nahm, Yong-Hyun Kim, Taehun Kim, Je-Geun Park, Jisoo Lee, Jaeyoung Hong, Soon Gu Kwon, Taeghwan Hyeon
More details from the publisher

Microscopic States and the Verwey Transition of Magnetite Nanocrystals Investigated by Nuclear Magnetic Resonance.

Nano letters 18:3 (2018) 1745-1750

Authors:

Sumin Lim, Baeksoon Choi, Sang Young Lee, Soonchil Lee, Ho-Hyun Nahm, Yong-Hyun Kim, Taehun Kim, Je-Geun Park, Jisoo Lee, Jaeyoung Hong, Soon Gu Kwon, Taeghwan Hyeon

Abstract:

57Fe nuclear magnetic resonance (NMR) of magnetite nanocrystals ranging in size from 7 nm to 7 μm is measured. The line width of the NMR spectra changes drastically around 120 K, showing microscopic evidence of the Verwey transition. In the region above the transition temperature, the line width of the spectrum increases and the spin-spin relaxation time decreases as the nanocrystal size decreases. The line-width broadening indicates the significant deformation of magnetic structure and reduction of charge order compared to bulk crystals, even when the structural distortion is unobservable. The reduction of the spin-spin relaxation time is attributed to the suppressed polaron hopping conductivity in ferromagnetic metals, which is a consequence of the enhanced electron-phonon coupling in the quantum-confinement regime. Our results show that the magnetic distortion occurs in the entire nanocrystal and does not comply with the simple model of the core-shell binary structure with a sharp boundary.
More details from the publisher

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Giving to Physics
  • Current students
  • Staff intranet