Variational quantum eigensolver for closed-shell molecules with non-bosonic corrections.
Physical chemistry chemical physics : PCCP 26:10 (2024) 8390-8396
Abstract:
The realization of quantum advantage with noisy-intermediate-scale quantum (NISQ) machines has become one of the major challenges in computational sciences. Maintaining coherence of a physical system with more than ten qubits is a critical challenge that motivates research on compact system representations to reduce algorithm complexity. Toward this end, the variational quantum eigensolver (VQE) used to perform quantum simulations is considered to be one of the most promising algorithms for quantum chemistry in the NISQ era. We investigate reduced mapping of one spatial orbital to a single qubit to analyze the ground state energy in a way that the Pauli operators of qubits are mapped to the creation/annihilation of singlet pairs of electrons. To include the effect of non-bosonic (or non-paired) excitations, we introduce a simple correction scheme in the electron correlation model approximated by the geometrical mean of the bosonic (or paired) terms. Employing it in a VQE algorithm, we assess ground state energies of H2O, N2, and Li2O in good agreement with full configuration interaction (FCI) models respectively, using only 6, 8, and 12 qubits with quantum gate depths proportional to the squares of the qubit counts. With the adopted seniority-zero approximation that uses only one half of the qubit counts of a conventional VQE algorithm, we find that our non-bosonic correction method reaches reliable quantum chemistry simulations at least for the tested systems.Fault-tolerant qubit encoding using a spin-7/2 qudit
Physical Review A American Physical Society 108 (2023) 062403
Abstract:
The implementation of error correction protocols is a central challenge in the development of practical quantum information technologies. Recently, multi-level quantum resources such as harmonic oscillators and qudits have attracted interest in this context because they offer the possibility of additional Hilbert space dimensions in a spatially compact way. Here we propose a quantum memory, implemented on a spin-7/2 nucleus hyperfine-coupled to an electron spin-1/2 qubit, which provides first order X, Y and Z error correction using significantly fewer quantum resources than the equivalently effective qubit-based protocols. Our encoding may be efficiently implemented in existing experimentally realised molecular electron-nuclear quantum spin systems. The strategy can be extended to higher-order error protection on higher-spin nuclei.Slow oxidation of magnetite nanoparticles elucidates the limits of the Verwey transition.
Nature communications 12:1 (2021) 6356
Abstract:
Magnetite (Fe3O4) is of fundamental importance for the Verwey transition near TV = 125 K, below which a complex lattice distortion and electron orders occur. The Verwey transition is suppressed by chemical doping effects giving rise to well-documented first and second-order regimes, but the origin of the order change is unclear. Here, we show that slow oxidation of monodisperse Fe3O4 nanoparticles leads to an intriguing variation of the Verwey transition: an initial drop of TV to a minimum at 70 K after 75 days and a followed recovery to 95 K after 160 days. A physical model based on both doping and doping-gradient effects accounts quantitatively for this evolution between inhomogeneous to homogeneous doping regimes. This work demonstrates that slow oxidation of nanoparticles can give exquisite control and separation of homogeneous and inhomogeneous doping effects on the Verwey transition and offers opportunities for similar insights into complex electronic and magnetic phase transitions in other materials.Correction to Microscopic States and the Verwey Transition of Magnetite Nanocrystals Investigated by Nuclear Magnetic Resonance.
Nano letters 18:7 (2018) 4631
Microscopic States and the Verwey Transition of Magnetite Nanocrystals Investigated by Nuclear Magnetic Resonance.
Nano letters 18:3 (2018) 1745-1750