Cell cycle regulation has shaped replication origins in budding yeast
Nature Structural & Molecular Biology Nature Research 32:9 (2025) 1697-1707
Abstract:
Eukaryotic DNA replication initiates from genomic loci known as origins. At budding yeast origins like ARS1, a double hexamer (DH) of the MCM replicative helicase is assembled by origin recognition complex (ORC), Cdc6 and Cdt1 by sequential hexamer loading from two opposed ORC binding sites. Cyclin-dependent kinase (CDK) inhibits DH assembly, which prevents re-replication by restricting helicase loading to the G1 phase. Here, we show that an intrinsically disordered region (IDR) in the Orc2 subunit promotes interaction between ORC and the first loaded, closed-ring MCM hexamer (the MCM–ORC (MO) intermediate). CDK-dependent phosphorylation of this IDR blocks MO formation and DH assembly. We show that MO stabilizes ORC at lower-affinity binding sites required for second hexamer loading. Origins comprising two high-affinity ORC sites can assemble DH efficiently without MO by independently loading single hexamers. Strikingly, these origins escape CDK inhibition in vitro and in vivo. Our work reveals mechanistic plasticity in MCM loading with implications for understanding how CDK regulation has shaped yeast origin evolution and how natural, strong origins might escape cell cycle regulation. We also identify key steps common to loading pathways, with implications for understanding how MCM is loaded in other eukaryotes.Cell Cycle Regulation has Shaped Budding Yeast Replication Origin Structure and Function
(2024)
Reaction Cycle of Operating Pump Protein Studied with Single-Molecule Spectroscopy.
Chemphyschem : a European journal of chemical physics and physical chemistry 23:21 (2022) e202200099
Abstract:
Biological machinery relies on nonequilibrium dynamics to maintain stable directional fluxes through complex reaction cycles. For such reaction cycles, the presence of microscopically irreversible conformational transitions of the protein, and the accompanying entropy production, is of central interest. In this work, we use multidimensional single-molecule fluorescence lifetime correlation spectroscopy to measure the forward and reverse conformational transitions of bacteriorhodopsin during trans-membrane H+ pumping. We quantify the flux, affinity, enthalpy and entropy production through portions of the reaction cycle as a function of temperature. We find that affinity of irreversible conformational transitions decreases with increasing temperature, resulting in diminishing flux and entropy production. We show that the temperature dependence of the transition affinity is well fit by the Gibbs-Helmholtz relation, allowing the ΔHtrans to be experimentally extracted.Protein-Bath Coupling of an Internal Reaction Coordinate at Intermediate Time Scales.
The journal of physical chemistry letters 12:45 (2021) 10942-10946
Abstract:
Thermally activated barrier-crossing processes are central to protein reaction kinetics. A determining factor for such kinetics is the extent to which the protein's motions are coupled to the surrounding bath. It is understood that slow large-scale conformational motions are strongly coupled to the environment, while fast librational motions are uncoupled. However, less is known about protein-bath coupling of reaction coordinates located on the interior of a protein and with dynamics on intermediate time scales. In this work, we use single molecule 2D fluorescence lifetime correlation spectroscopy to study the microsecond chemical reaction occurring in the chromophore pocket of eGFP. The equilibrium reaction involves a dihedral rotation of a glutamic acid residue and a rearrangement of the local hydrogen-bonding network surrounding the endogenous chromophore, with no accompanying large-scale conformational changes. We observe that the internal chemical reaction is coupled to the solvent viscosity, though the scaling deviates from Kramers' behavior. We attribute this deviation to the internal friction of the protein, which weakens the protein-solvent coupling at high viscosity and intermediate time scales.Fast and robust two-dimensional inverse Laplace transformation of single-molecule fluorescence lifetime data.
Biophysical journal 120:20 (2021) 4590-4599