Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Black Hole

Lensing of space time around a black hole. At Oxford we study black holes observationally and theoretically on all size and time scales - it is some of our core work.

Credit: ALAIN RIAZUELO, IAP/UPMC/CNRS. CLICK HERE TO VIEW MORE IMAGES.

Dr Thomas Williams

Visitor

Research theme

  • Astronomy and astrophysics

Sub department

  • Astrophysics

Research groups

  • Galaxy formation and evolution
thomas.williams@physics.ox.ac.uk
Professional Website
  • About
  • Publications

WISDOM Project–XXV. Improving the CO-dynamical supermassive black hole mass measurement in the galaxy NGC 1574 using high spatial resolution ALMA observations

Monthly Notices of the Royal Astronomical Society Oxford University Press 541:3 (2025) 2540-2552

Authors:

Hengyue Zhang, Martin Bureau, Ilaria Ruffa, Timothy A Davis, Pandora Dominiak, Jacob S Elford, Federico Lelli, Thomas G Williams

Abstract:

We present a molecular gas dynamical supermassive black hole (SMBH) mass measurement in the nearby barred lenticular galaxy NGC 1574, using Atacama Large Millimeter/sub-millimeter Array observations of the 12CO(2-1) emission line with synthesised beam full-widths at half-maximum of 0.″078×0.″070 (≈7.5×6.7 pc2). The observations are the first to spatially resolve the SMBH's sphere of influence (SoI), resulting in an unambiguous detection of the Keplerian velocity increase due to the SMBH towards the centre of the gas disc. We also detect a previously known large-scale kinematic twist of the CO velocity map, due to a position angle (PA) warp and possible mild non-circular motions, and we resolve a PA warp within the central 0.″2×0.″2 of the galaxy, larger than that inferred from previous intermediate-resolution data. By forward modelling the data cube, we infer a SMBH mass of (6.2±1.2)×107 M⊙ (1σ confidence interval), slightly smaller than but statistically consistent with the SMBH mass derived from the previous intermediate-resolution data that did not resolve the SoI, and slightly outside the 1σ scatter of the SMBH mass–stellar velocity dispersion relation. Our measurement thus emphasises the importance of observations that spatially resolve the SMBH SoI for accurate SMBH mass measurements and gas dynamical modelling.
More details from the publisher
Details from ORA
More details

WISDOM project – XXIII. Star formation efficiencies of eight early-type galaxies and bulges observed with SITELLE and ALMA

Monthly Notices of the Royal Astronomical Society Oxford University Press 540:1 (2025) 71-89

Authors:

Anan Lu, Daryl Haggard, Martin Bureau, Jindra Gensior, Carmelle Robert, Thomas G Williams, Fu-Heng Liang, Woorak Choi, Timothy A Davis, Ilaria Ruffa, Sara Babic, Hope Boyce, Michele Cappellari, Benjamin Cheung, Laurent Drissen, Jacob S Elford, Thomas Martin, Carter Rhea, Laurie Rousseau-Nepton, Marc Sarzi, Hengyue Zhang

Abstract:

Early-type galaxies (ETGs) are known to harbour dense spheroids of stars with scarce star formation (SF). Approximately a quarter of these galaxies have rich molecular gas reservoirs yet do not form stars efficiently. These gas-rich ETGs have properties similar to those of bulges at the centres of spiral galaxies. We use spatially resolved observations (⁠∼ 100 pc resolution) of warm ionized-gas emission lines (H𝛽, [OIII], [NII], H𝛼 and [SII]) from the imaging Fourier transform spectrograph SITELLE at the Canada–France–Hawaii Telescope and cold molecular gas [12CO(2–1) or 12CO(3–2)] from the Atacama Large Millimeter/submillimeter Array to study the SF properties of eight ETGs and bulges. We use the ionized-gas emission lines to classify the ionization mechanisms and demonstrate a complete absence of regions dominated by SF ionization in these ETGs and bulges, despite abundant cold molecular gas. The ionization classifications also show that our ETGs and bulges are dominated by old stellar populations. We use the molecular gas surface densities and H -derived SF rates (in spiral galaxies outside of the bulges) or upper limits (in ETGs and bulges) to constrain the depletion times (inverse of the SF efficiencies), suggesting again suppressed SF in our ETGs and bulges. Finally, we use the molecular gas velocity fields to measure the gas kinematics, and show that bulge dynamics, particularly the strong shear due to the deep and steep gravitational potential wells, is an important SF regulation mechanism for at least half of our sample galaxies.
More details from the publisher
Details from ORA
More details

WISDOM Project – XXII. A 5 per cent precision CO-dynamical supermassive black hole mass measurement in the galaxy NGC 383

Monthly Notices of the Royal Astronomical Society Oxford University Press 537:1 (2025) 520-536

Authors:

Hengyue Zhang, Martin Bureau, Ilaria Ruffa, Michele Cappellari, Timothy A Davis, Pandora Dominiak, Jacob S Elford, Satoru Iguchi, Federico Lelli, Marc Sarzi, Thomas G Williams

Abstract:

We present a measurement of the supermassive black hole (SMBH) mass of the nearby lenticular galaxy NGC 383, based on Atacama Large Millimeter/sub-millimeter Array (ALMA) observations of the 12CO(2-1) emission line with an angular resolution of 0.″050×0.″024 (≈16×8 pc2). These observations spatially resolve the nuclear molecular gas disc down to ≈41,300 Schwarzschild radii and the SMBH sphere of influence by a factor of ≈24 radially, better than any other SMBH mass measurement using molecular gas to date. The high resolution enables us to probe material with a maximum circular velocity of ≈1040 km/s-1, even higher than those of the highest-resolution SMBH mass measurements using megamasers. We detect a clear Keplerian increase (from the outside in) of the line-of-sight rotation velocities, a slight offset between the gas disc kinematic (i.e. the position of the SMBH) and morphological (i.e. the centre of the molecular gas emission) centres, an asymmetry of the innermost rotation velocity peaks and evidence for a mild position angle warp and/or non-circular motions within the central ≈0.″3 arcsec. By forward modelling the mass distribution and ALMA data cube, we infer a SMBH mass of (3.58±0.19)×109 M⊙ (1σ confidence interval), more precise (5%) but consistent within ≈1.4σ with the previous measurement using lower-resolution molecular gas data. Our measurement emphasises the importance of high spatial resolution observations for precise SMBH mass determinations.
More details from the publisher
Details from ORA
More details

PHANGS-JWST: Data-processing Pipeline and First Full Public Data Release

The Astrophysical Journal: Supplement Series American Astronomical Society 273:1 (2024) 13

Authors:

Thomas G Williams, Janice C Lee, Kirsten L Larson, Adam K Leroy, Karin Sandstrom, Eva Schinnerer, David A Thilker, Francesco Belfiore, Oleg V Egorov, Erik Rosolowsky, Jessica Sutter, Joseph DePasquale, Alyssa Pagan, Travis A Berger, Gagandeep S Anand, Ashley T Barnes, Frank Bigiel, Médéric Boquien, Yixian Cao, Jérémy Chastenet, Mélanie Chevance, Ryan Chown, Daniel A Dale, Sinan Deger

Abstract:

The exquisite angular resolution and sensitivity of JWST are opening a new window for our understanding of the Universe. In nearby galaxies, JWST observations are revolutionizing our understanding of the first phases of star formation and the dusty interstellar medium. Nineteen local galaxies spanning a range of properties and morphologies across the star-forming main sequence have been observed as part of the PHANGS-JWST Cycle 1 Treasury program at spatial scales of ∼5–50 pc. Here, we describe pjpipe, an image-processing pipeline developed for the PHANGS-JWST program that wraps around and extends the official JWST pipeline. We release this pipeline to the community as it contains a number of tools generally useful for JWST NIRCam and MIRI observations. Particularly for extended sources, pjpipe products provide significant improvements over mosaics from the MAST archive in terms of removing instrumental noise in NIRCam data, background flux matching, and calibration of relative and absolute astrometry. We show that slightly smoothing F2100W MIRI data to 0.″9 (degrading the resolution by about 30%) reduces the noise by a factor of ≈3. We also present the first public release (DR1.1.0) of the pjpipe processed eight-band 2–21 μm imaging for all 19 galaxies in the PHANGS-JWST Cycle 1 Treasury program. An additional 55 galaxies will soon follow from a new PHANGS-JWST Cycle 2 Treasury program.
More details from the publisher
Details from ORA
More details

WISDOM Project - XVI. The link between circumnuclear molecular gas reservoirs and active galactic nucleus fuelling

Monthly Notices of the Royal Astronomical Society Oxford University Press 528:1 (2023) stad4006

Authors:

Jacob S Elford, Timothy A Davis, Ilaria Ruffa, Martin Bureau, Michele Cappellari, Jindra Gensior, Satoru Iguchi, Fuheng Liang, Lijie Liu, Anan Lu, Thomas Williams

Abstract:

We use high-resolution data from the millimetre-Wave Interferometric Survey of Dark Object Masses (WISDOM) project to investigate the connection between circumnuclear gas reservoirs and nuclear activity in a sample of nearby galaxies. Our sample spans a wide range of nuclear activity types including radio galaxies, Seyfert galaxies, low-luminosity active galactic nuclei (AGN) and inactive galaxies. We use measurements of nuclear millimetre continuum emission along with other archival tracers of AGN accretion/activity to investigate previous claims that at, circumnuclear scales (<100 pc), these should correlate with the mass of the cold molecular gas. We find that the molecular gas mass does not correlate with any tracer of nuclear activity. This suggests the level of nuclear activity cannot solely be regulated by the amount of cold gas around the supermassive black hole (SMBH). This indicates that AGN fuelling, that drives gas from the large-scale galaxy to the nuclear regions, is not a ubiquitous process and may vary between AGN type, with time-scale variations likely to be very important. By studying the structure of the central molecular gas reservoirs, we find our galaxies have a range of nuclear molecular gas concentrations. This could indicate that some of our galaxies may have had their circumnuclear regions impacted by AGN feedback, even though they currently have low nuclear activity. Alternatively, the nuclear molecular gas concentrations in our galaxies could instead be set by secular processes.
More details from the publisher
Details from ORA
More details

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Giving to Physics
  • Current students
  • Staff intranet