Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Insertion of STC into TRT at the Department of Physics, Oxford
Credit: CERN

Dr Tomislav Vladisavljevic

Visitor

Sub department

  • Particle Physics

Research groups

  • Accelerator Neutrinos
tomislav.vladisavljevic@physics.ox.ac.uk
Denys Wilkinson Building, room 664a
  • About
  • Publications

Search for heavy neutrinos with the T2K near detector ND280

Physical Review D American Physical Society 100:5 (2019) 052006

Authors:

K Abe, R Akutsu, A Ali, C Andreopoulos, L Anthony, M Antonova, S Aoki, A Ariga, Y Ashida, Y Awataguchi, Y Azuma, S Ban, M Barbi, GJ Barker, Giles Barr, C Barry, M Batkiewicz-Kwasniak, F Bench, V Berardi, S Berkman, RM Berner, L Berns, S Bhadra, S Bienstock, A Blondel, S Bolognesi, B Bourguille, SB Boyd, D Brailsford, A Bravar, C Bronner, MB Avanzini, J Calcutt, T Campbell, S Cao, SL Cartwright, Catanesi, A Cervera, A Chappell, C Checchia, D Cherdack, N Chikuma, G Christodoulou, J Coleman, G Collazuol, D Coplowe, A Cudd, A Dabrowska, GD Rosa, T Dealtry

Abstract:

This paper reports on the search for heavy neutrinos with masses in the range $140 < M_N < 493$ MeV/c$^2$ using the off-axis near detector ND280 of the T2K experiment. These particles can be produced from kaon decays in the standard neutrino beam and then subsequently decay in ND280. The decay modes under consideration are $N \to \ell^{\pm}_{\alpha} \pi^{\mp}$ and $N \to \ell^+_{\alpha} \ell^-_{\beta} \nu (\bar\nu)$ ($\alpha,\beta=e,\mu$). A search for such events has been made using the Time Projection Chambers of ND280, where the background has been reduced to less than two events in the current dataset in all channels. No excess has been observed in the signal region. A combined Bayesian statistical approach has been applied to extract upper limits on the mixing elements of heavy neutrinos to electron-, muon- and tau- flavoured currents ($U_e^2$, $U_{\mu}^2$, $U_{\tau}^2$) as a function of the heavy neutrino mass, e.g. $U_e^2 < 10^{-9}$ at $90\%$ C.L. for a mass of $390$ MeV/c$^2$. These constraints are competitive with previous experiments.
More details from the publisher
Details from ORA
More details
Details from ArXiV

Search for neutral-current induced single photon production at the ND280 near detector in T2K

Journal of Physics G: Nuclear and Particle Physics IOP Publishing 46:8 (2019) 08LT01

Authors:

K Abe, R Akutsu, A Ali, C Andreopoulos, L Anthony, M Antonova, S Aoki, A Ariga, Y Ashida, Y Awataguchi, Y Azuma, S Ban, M Barbi, GJ Barker, Giles Barr, C Barry, M Batkiewicz-Kwasniak, F Bench, V Berardi, S Berkman, RM Berner, L Berns, S Bhadra, S Bienstock, A Blondel

Abstract:

All rights reserved. Neutrino neutral-current (NC) induced single photon production is a subleading order process for accelerator-based neutrino beam experiments including T2K. It is, however, an important process to understand because it is a background for electron (anti)neutrino appearance oscillation experiments. Here, we performed the first search of this process below 1 GeV using the finegrained detector at the T2K ND280 off-axis near detector. By reconstructing single photon kinematics from electron positron pairs, we achieved 95% pure gamma ray sample from 5.738 1020 protons-on-targets neutrino mode data. We do not find positive evidence of NC induced single photon production in this sample. We set the model-dependent upper limit on the cross-section for this process, at 0.114 10-38 cm2 (90% C.L.) per nucleon, using the J-PARC off-axis neutrino beam with an average energy of .En. ~ 0.6 GeV. This is the first limit on this process below 1.GeV which is important for current and future oscillation experiments looking for electron neutrino appearance oscillation signals.
More details from the publisher
Details from ORA
More details
Details from ArXiV

Search for light sterile neutrinos with the T2K far detector Super-Kamiokande at a baseline of 295km

Physical Review D American Physical Society 99:7 (2019) 071103

Authors:

K Abe, R Akutsu, A Ali, C Andreopoulos, L Anthony, M Antonova, S Aoki, A Ariga, Y Ashida, Y Awataguchi, Y Azuma, S Ban, M Barbi, GJ Barker, G Barr, C Barry, M Batkiewicz-Kwasniak, F Bench, V Berardi, S Berkman, RM Berner, L Berns, S Bhadra, S Bienstock, A Blondel, S Bolognesi, B Bourguille, SB Boyd, D Brailsford, A Bravar, C Bronner, MB Avanzini, J Calcutt, T Campbell, S Cao, SL Cartwright, A Cervera, A Chappell, C Checchia, D Cherdack, N Chikuma, G Christodoulou, J Coleman, G Collazuol, D Coplowe, A Cudd, A Dabrowska, G De Rosa, T Dealtry

Abstract:

We perform a search for light sterile neutrinos using the data from the T2K far detector at a baseline of 295 km, with an exposure of 14.7(7.6)×10^20 protons on target in neutrino (antineutrino) mode. A selection of neutral-current interaction samples is also used to enhance the sensitivity to sterile mixing. No evidence of sterile neutrino mixing in the 3+1 model was found from a simultaneous fit to the charged-current muon, electron and neutral-current neutrino samples. We set the most stringent limit on the sterile oscillation amplitude sin^2θ24 for the sterile neutrino mass splitting Δm^2v41<3×10^−3eV^2/c^4.
More details from the publisher
Details from ORA
More details
Details from ArXiV

Measurements of π±, K± and proton double differential yields from the surface of the T2K replica target for incoming 31 GeV/c protons with the NA61/SHINE spectrometer at the CERN SPS

European Physical Journal C Springer Nature 79:2 (2019) 100

Authors:

N Abgrall, A Aduszkiewicz, EV Andronov, T Antićić, B Baatar, M Baszczyk, S Bhosale, A Blondel, M Bogomilov, A Brandin, A Bravar, W Bryliński, J Brzychczyk, SA Bunyatov, O Busygina, A Bzdak, H Cherif, M Ćirković, T Czopowicz, A Damyanova, N Davis, M Deveaux, W Dominik, P Dorosz, J Dumarchez, R Engel, A Ereditato, GA Feofilov, L Fields, Z Fodor, A Garibov, M Gaździcki, O Golosov, M Golubeva, K Grebieszkow, F Guber, A Haesler, T Hasegawa, AE Hervé, SN Igolkin, S Ilieva, A Ivashkin, SR Johnson, K Kadija, E Kaptur, N Kargin, E Kashirin, M Kiełbowicz, VA Kireyeu, V Klochkov, T Kobayashi, VI Kolesnikov, D Kolev, A Korzenev, VN Kovalenko, K Kowalik, S Kowalski, M Koziel, A Krasnoperov, W Kucewicz, M Kuich, A Kurepin, D Larsen, A László, TV Lazareva, M Lewicki, K Łojek, B Łysakowski, VV Lyubushkin, M Maćkowiak-Pawłowska, Z Majka, B Maksiak, AI Malakhov, D Manić, A Marchionni, A Marcinek, AD Marino, K Marton, HJ Mathes, T Matulewicz, V Matveev, GL Melkumov, AO Merzlaya, B Messerly, Ł Mik, GB Mills, S Morozov, S Mrówczyński, Y Nagai, T Nakadaira, M Naskręt, K Nishikawa, V Ozvenchuk, V Paolone, M Pavin, O Petukhov, C Pistillo, R Płaneta, P Podlaski, BA Popov, M Posiadała-Zezula, DS Prokhorova, S Puławski, J Puzović, W Rauch, M Ravonel, R Renfordt, E Richter-Wąs, D Röhrich, E Rondio, M Roth, BT Rumberger, A Rustamov, M Rybczynski, A Rybicki, A Sadovsky, K Sakashita, K Schmidt, T Sekiguchi, I Selyuzhenkov, A Yu Seryakov, P Seyboth, M Shibata, M Słodkowski, A Snoch, P Staszel, G Stefanek, J Stepaniak, M Strikhanov, H Ströbele, T Šuša, M Tada, A Taranenko, A Tefelska, D Tefelski, V Tereshchenko, A Toia, R Tsenov, L Turko, R Ulrich, M Unger, FF Valiev, D Veberič, VV Vechernin, M Walewski, A Wickremasinghe, Z Włodarczyk, A Wojtaszek-Szwarc, O Wyszyński, L Zambelli, ED Zimmerman, R Zwaska, L Berns, GA Fiorentini, M Friend, M Hartz, T Vladisavljevic, M Yu
More details from the publisher
More details

Characterization of nuclear effects in muon-neutrino scattering on hydrocarbon with a measurement of final-state kinematics and correlations in charged-current pionless interactions at T2K

Physical Review D American Physical Society 98 (2018) 032003

Authors:

K Abe, J Amey, C Andreopoulos, L Anthony, M Antonova, S Aoki, A Ariga, Y Ashida, Y Azuma, S Ban, M Barbi, GJ Barker, Giles Barr, C Barry, M Batkiewicz, V Berardi, S Berkman, RM Berner, L Berns, S Bhadra, S Bienstock, A Blondel, S Bolognesi, S Bordoni, B Bourguille, SB Boyd, D Brailsford, A Bravar, C Bronner, MB Avanzini, J Calcutt, T Campbell, S Cao, SL Cartwright, Catanesi, A Cervera, A Chappell, C Checchia, D Cherdack, N Chikuma, G Christodoulou, J Coleman, G Collazuol, David Coplowe, A Cudd, A Dabrowska, G De Rosa, T Dealtry, PF Denner, Dennis

Abstract:

This paper reports measurements of final-state proton multiplicity, muon and proton kinematics, and their correlations in charged-current pionless neutrino interactions, measured by the T2K ND280 near detector in its plastic scintillator (C8H8) target. The data were taken between years 2010 and 2013, corresponding to approximately 6×1020 protons on target. Thanks to their exploration of the proton kinematics and of imbalances between the proton and muon kinematics, the results offer a novel probe of the nuclear-medium effects most pertinent to the (sub-)GeV neutrino-nucleus interactions that are used in accelerator-based long-baseline neutrino oscillation measurements. These 3 results are compared to many neutrino-nucleus interaction models which all fail to describe at least part of the observed phase space. In case of events without a proton above a detection threshold in the final state, a fully consistent implementation of the local Fermi gas model with multinucleon interactions gives the best description of the data. In the case of at least one proton in the final state the spectral function model agrees well with the data, most notably when measuring the kinematic imbalance between the muon and the proton in the plane transverse to the incoming neutrino. Within the models considered, only the existence of multinucleon interactions are able to describe the extracted cross-section within regions of high transverse kinematic imbalance. The effect of final-state interactions is also discussed.
More details from the publisher
Details from ORA
More details
Details from ArXiV

Pagination

  • First page First
  • Previous page Prev
  • Page 1
  • Page 2
  • Page 3
  • Page 4
  • Current page 5
  • Page 6
  • Page 7
  • Page 8
  • Page 9
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet