Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Insertion of STC into TRT at the Department of Physics, Oxford
Credit: CERN

Prof Roman Walczak

Emeritus Professor

Research theme

  • Accelerator physics
  • Lasers and high energy density science
  • Plasma physics

Sub department

  • Particle Physics

Research groups

  • Laser-plasma accelerator group
Roman.Walczak@physics.ox.ac.uk
Denys Wilkinson Building, room 659
  • About
  • Publications

Reconstructing nonlinear plasma wakefields using a generalized temporally encoded spectral shifting analysis

(2018)

Authors:

C Arran, NH Matlis, R Walczak, SM Hooker
More details from the publisher

Reconstructing nonlinear plasma wakefields using a generalized temporally encoded spectral shifting analysis

Physical Review Accelerators and Beams American Physical Society 21 (2018) 103501

Authors:

Christopher Arran, NH Matlis, Roman Walczak, Simon M Hooker

Abstract:

We generalize the temporally encoded spectral shifting (TESS) analysis for measuring plasma wakefields using spectral interferometry to dissimilar probe pulses of arbitrary spectral profile and to measuring nonlinear wakefields. We demonstrate that the Gaussian approximation used up until now results in a substantial miscalculation of the wakefield amplitude, by a factor of up to two. A method to accurately measure higher amplitude quasilinear and nonlinear wakefields is suggested, using an extension to the TESS procedure, and we place some limits on its accuracy in these regimes. These extensions and improvements to the analysis demonstrate its potential for rapid and accurate on-shot diagnosis of plasma wakefields, even at low plasma densities.
More details from the publisher
Details from ORA
More details
More details
Details from ArXiV

Hydrodynamic optical-field-ionized plasma channels

Physical Review E American Physical Society 97:5 (2018) 053203

Authors:

Robert J Shalloo, C Arran, L Corner, J Holloway, J Jonnerby, R Walczak, HM Milchberg, Simon Hooker

Abstract:

We present experiments and numerical simulations which demonstrate that fully-ionized, lowdensity plasma channels could be formed by hydrodynamic expansion of plasma columns produced by optical field ionization (OFI). Simulations of the hydrodynamic expansion of plasma columns formed in hydrogen by an axicon lens show the generation of 200 mm long plasma channels with axial densities of order ne(0) = 1 × 1017 cm−3 and lowest-order modes of spot size WM ≈ 40 µm. These simulations show that the laser energy required to generate the channels is modest: of order 1 mJ per centimetre of channel. The simulations are confirmed by experiments with a spherical lens which show the formation of short plasma channels with 1.5 × 1017 cm−3 . ne(0) . 1 × 1018 cm−3 and 61 µm & WM & 33 µm. Low-density plasma channels of this type would appear to be well-suited as multi-GeV laser-plasma accelerator stages capable of long-term operation at high pulse repetition rates.
More details from the publisher
Details from ORA
More details
More details
Details from ArXiV

Layout considerations for a future electron plasma research accelerator facility EuPRAXIA

Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment Elsevier 909 (2018) 111-113

Authors:

PA Walker, RW Assmann, R Brinkmann, E Chiadroni, U Dorda, M Ferrario, D Kocon, B Marchetti, L Pribyl, A Specka, Roman Walczak

Abstract:

The Horizon 2020 Project EuPRAXIA (“European Plasma Research Accelerator with eXcellence In Applications”) is preparing a conceptual design for a highly compact and cost-effective European facility with multi-GeV electron beams using plasma as the acceleration medium. The design includes two user areas: one for FEL science and one for High Energy Physics (HEP) detector development and other pilot applications. The accelerator facility will be based on a laser and/or a beam driven plasma acceleration approach. This contribution introduces layout considerations of the future plasma accelerator facilities in the context of EuPRAXIA. It compares conventional and novel plasma accelerator facility requirements and presents potential layouts for the future site. Together with performance analysis, cost effectiveness, and targeted user cases of the individual configurations, such layout studies will later enable a ranking of potential configurations. Based on this information the optimal combination of technologies will be defined for the 2019 conceptual design report of the EuPRAXIA facility.
More details from the publisher
Details from ORA

Hydrodynamic, Optically-Field-Ionized (HOFI) Plasma Channels

(2018)

Authors:

Robert Shalloo, Christopher Arran, Laura Corner, James Holloway, Jakob Jonnerby, Roman Walczak, Howard Milchberg, Simon Hooker
More details from the publisher

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 4
  • Page 5
  • Page 6
  • Page 7
  • Current page 8
  • Page 9
  • Page 10
  • Page 11
  • Page 12
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet