Attributing climate and weather extremes to Northern Hemisphere sea ice and terrestrial snow: progress, challenges and ways forward
npj Climate and Atmospheric Science Nature Research 8:1 (2025) 166
Abstract:
Sea ice and snow are crucial components of the cryosphere and the climate system. Both sea ice and spring snow in the Northern Hemisphere (NH) have been decreasing at an alarming rate in a changing climate. Changes in NH sea ice and snow have been linked with a variety of climate and weather extremes including cold spells, heatwaves, droughts and wildfires. Understanding of these linkages will benefit the predictions of climate and weather extremes. However, existing work on this has been largely fragmented and is subject to large uncertainties in physical pathways and methodologies. This has prevented further substantial progress in attributing climate and weather extremes to sea ice and snow change, and will potentially risk the loss of a critical window for effective climate change mitigation. In this review, we synthesize the current progress in attributing climate and weather extremes to sea ice and snow change by evaluating the observed linkages, their physical pathways and uncertainties in these pathways, and suggesting ways forward for future research efforts. By adopting the same framework for both sea ice and snow, we highlight their combined influence and the cryospheric feedback to the climate system. We suggest that future research will benefit from improving observational networks, addressing the causality and complexity of the linkages using multiple lines of evidence, adopting large-ensemble approaches and artificial intelligence, achieving synergy between different methodologies/disciplines, widening the context, and coordinated international collaboration.No detectable decrease in extreme cold-related mortality in Canada from Arctic sea ice loss
Environmental Research Letters IOP Publishing 20:4 (2025) 044042
Attributing climate and weather extremes to Northern Hemisphere sea ice and terrestrial snow: Progress, challenges and ways forward
Copernicus Publications (2025)
Influence of high-latitude blocking and the northern stratospheric polar vortex on cold-air outbreaks under Arctic amplification of global warming
Environmental Research: Climate IOP Publishing (2024)
Abstract:
<jats:title>Abstract</jats:title> <jats:p>It is widely accepted that Arctic Amplification (AA) - enhanced Arctic warming relative to global warming - will increasingly moderate cold-air outbreaks to the midlatitudes. Yet, some recent studies also argue that AA over the last three decades to the rest of the present century may potentially contribute to more frequent severe winter weather including continued disruptive cold spells. To prepare society for future extremes, it is necessary to resolve whether AA and severe midlatitude winter weather are coincidental or physically linked. Severe winter weather events in the northern continents are often related to a range of stratospheric polar vortex configurations and atmospheric blocking, but these dynamical drivers are complex and still not fully understood. Here we review recent research advances and paradigms including a nonlinear theory of atmospheric blocking that helps to explain the location, timing and duration of AA/midlatitude weather connections, as well as studies of the polar vortex’s zonal asymmetric and intra-seasonal variations, its southward migration over continents, and its surface impacts. We highlight novel understanding of stratospheric polar vortex variability – polar vortex stretching and a stratosphere-troposphere oscillation – that have remained mostly hidden in the predominant research focus on sudden stratospheric warmings. A physical explanation of the two-way vertical coupling process between the polar vortex and blocking highs, taking into account local surface conditions, remains elusive. We conclude that evidence exists for tropical preconditioning of Arctic-midlatitude climate linkages. Recent research using very large-ensemble climate modelling provides an emerging opportunity to robustly quantify internal atmospheric variability when studying the potential response of midlatitude cold-air outbreaks to AA and sea-ice loss.</jats:p>Dynamic and Thermodynamic Control of the Response of Winter Climate and Extreme Weather to Projected Arctic Sea‐Ice Loss
Geophysical Research Letters Wiley Open Access 51:13 (2024) e2024GL109271