Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Juno Jupiter image

Kunhui Ye

Marie Curie Fellow

Research theme

  • Climate physics

Sub department

  • Atmospheric, Oceanic and Planetary Physics

Research groups

  • Climate dynamics
kunhui.ye@physics.ox.ac.uk
ORCID
Google Scholar
  • About
  • Publications

Attributing climate and weather extremes to Northern Hemisphere sea ice and terrestrial snow: progress, challenges and ways forward

npj Climate and Atmospheric Science Nature Research 8:1 (2025) 166

Authors:

Kunhui Ye, Judah Cohen, Hans W Chen, Shiyue Zhang, Dehai Luo, Mostafa Essam Hamouda

Abstract:

Sea ice and snow are crucial components of the cryosphere and the climate system. Both sea ice and spring snow in the Northern Hemisphere (NH) have been decreasing at an alarming rate in a changing climate. Changes in NH sea ice and snow have been linked with a variety of climate and weather extremes including cold spells, heatwaves, droughts and wildfires. Understanding of these linkages will benefit the predictions of climate and weather extremes. However, existing work on this has been largely fragmented and is subject to large uncertainties in physical pathways and methodologies. This has prevented further substantial progress in attributing climate and weather extremes to sea ice and snow change, and will potentially risk the loss of a critical window for effective climate change mitigation. In this review, we synthesize the current progress in attributing climate and weather extremes to sea ice and snow change by evaluating the observed linkages, their physical pathways and uncertainties in these pathways, and suggesting ways forward for future research efforts. By adopting the same framework for both sea ice and snow, we highlight their combined influence and the cryospheric feedback to the climate system. We suggest that future research will benefit from improving observational networks, addressing the causality and complexity of the linkages using multiple lines of evidence, adopting large-ensemble approaches and artificial intelligence, achieving synergy between different methodologies/disciplines, widening the context, and coordinated international collaboration.
More details from the publisher
Details from ORA
More details

No detectable decrease in extreme cold-related mortality in Canada from Arctic sea ice loss

Environmental Research Letters IOP Publishing 20:4 (2025) 044042

Authors:

Emily Ball, YT Eunice Lo, Peter AG Watson, Eric Lavigne, James Screen, Kunhui Ye, Dann Mitchell
More details from the publisher
More details

Attributing climate and weather extremes to Northern Hemisphere sea ice and terrestrial snow: Progress, challenges and ways forward

Copernicus Publications (2025)

Authors:

Kunhui Ye, Judah Cohen, Hans W Chen, Shiyue Zhang, Dehai Luo, Mostafa Essam Hamouda
More details from the publisher

Influence of high-latitude blocking and the northern stratospheric polar vortex on cold-air outbreaks under Arctic amplification of global warming

Environmental Research: Climate IOP Publishing (2024)

Authors:

Edward Hanna, Jennifer A Francis, Muyin Wang, James E Overland, Judah Cohen, Dehai Luo, Timo Vihma, Qiang Fu, Richard J Hall, Ralf Jaiser, Seong-Joong Kim, Raphael Harry Köhler, Linh N Luu, Xiaocen Shen, Irene Erner, Jinro Ukita, Yao Yao, Kunhui Ye, Hyesun Choi, Natasa Skific

Abstract:

<jats:title>Abstract</jats:title> <jats:p>It is widely accepted that Arctic Amplification (AA) - enhanced Arctic warming relative to global warming - will increasingly moderate cold-air outbreaks to the midlatitudes. Yet, some recent studies also argue that AA over the last three decades to the rest of the present century may potentially contribute to more frequent severe winter weather including continued disruptive cold spells. To prepare society for future extremes, it is necessary to resolve whether AA and severe midlatitude winter weather are coincidental or physically linked. Severe winter weather events in the northern continents are often related to a range of stratospheric polar vortex configurations and atmospheric blocking, but these dynamical drivers are complex and still not fully understood. Here we review recent research advances and paradigms including a nonlinear theory of atmospheric blocking that helps to explain the location, timing and duration of AA/midlatitude weather connections, as well as studies of the polar vortex’s zonal asymmetric and intra-seasonal variations, its southward migration over continents, and its surface impacts. We highlight novel understanding of stratospheric polar vortex variability – polar vortex stretching and a stratosphere-troposphere oscillation – that have remained mostly hidden in the predominant research focus on sudden stratospheric warmings. A physical explanation of the two-way vertical coupling process between the polar vortex and blocking highs, taking into account local surface conditions, remains elusive. We conclude that evidence exists for tropical preconditioning of Arctic-midlatitude climate linkages. Recent research using very large-ensemble climate modelling provides an emerging opportunity to robustly quantify internal atmospheric variability when studying the potential response of midlatitude cold-air outbreaks to AA and sea-ice loss.</jats:p>
More details from the publisher
More details

Dynamic and Thermodynamic Control of the Response of Winter Climate and Extreme Weather to Projected Arctic Sea‐Ice Loss

Geophysical Research Letters Wiley Open Access 51:13 (2024) e2024GL109271

Authors:

Kunhui Ye, Tim Woollings, Sarah N Sparrow

Abstract:

A novel sub‐sampling method has been used to isolate the dynamic effects of the response of the North Atlantic Oscillation (NAO) and the Siberian High (SH) from the total response to projected Arctic sea‐ice loss under 2°C global warming above preindustrial levels in very large initial‐condition ensemble climate simulations. Thermodynamic effects of Arctic warming are more prominent in Europe while dynamic effects are more prominent in Asia/East Asia. This explains less‐severe cold extremes in Europe but more‐severe cold extremes in Asia/East Asia. For Northern Eurasia, dynamic effects overwhelm the effect of increased moisture from a warming Arctic, leading to an overall decrease in precipitation. We show that the response scales linearly with the dynamic response. However, caution is needed when interpreting inter‐model differences in the response because of internal variability, which can largely explain the inter‐model spread in the NAO and SH response in the Polar Amplification Model Intercomparison Project.
More details from the publisher
Details from ORA
More details

Pagination

  • Current page 1
  • Page 2
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet