Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Juno Jupiter image

Laure Zanna

Visiting Professor

Sub department

  • Atmospheric, Oceanic and Planetary Physics
laure.zanna@nyu.edu
Telephone: 01865 (2)72925
Robert Hooke Building, room F52
  • About
  • Publications

The relationship between a deformation-based eddy parameterization and the LANS-α turbulence model

Ocean Modelling 126 (2018) 56-62

Authors:

SD Bachman, JA Anstey, L Zanna

Abstract:

© 2018 Elsevier Ltd A recent class of ocean eddy parameterizations proposed by Porta Mana and Zanna (2014) and Anstey and Zanna (2017) modeled the large-scale flow as a non-Newtonian fluid whose subgridscale eddy stress is a nonlinear function of the deformation. This idea, while largely new to ocean modeling, has a history in turbulence modeling dating at least back to Rivlin (1957). The new class of parameterizations results in equations that resemble the Lagrangian-averaged Navier–Stokes-α model (LANS-α e.g., Holm et al., 1998a). In this note we employ basic tensor mathematics to highlight the similarities between these turbulence models using component-free notation. We extend the Anstey and Zanna (2017) parameterization, which was originally presented in 2D, to 3D, and derive variants of this closure that arise when the full non-Newtonian stress tensor is used. Despite the mathematical similarities between the non-Newtonian and LANS-α models which might provide insight into numerical implementation, the input and dissipation of kinetic energy between these two turbulent models differ.
More details from the publisher
Details from ORA
More details

Southern Ocean carbon-wind stress feedback

Climate Dynamics (2018) 1-15

Authors:

B Bronselaer, L Zanna, DR Munday, J Lowe

Abstract:

© 2017 The Author(s) The Southern Ocean is the largest sink of anthropogenic carbon in the present-day climate. Here, Southern Ocean (Formula presented.) and its dependence on wind forcing are investigated using an equilibrium mixed layer carbon budget. This budget is used to derive an expression for Southern Ocean (Formula presented.) sensitivity to wind stress. Southern Ocean (Formula presented.) is found to vary as the square root of area-mean wind stress, arising from the dominance of vertical mixing over other processes such as lateral Ekman transport. The expression for p\hbox {CO}_{2} is validated using idealised coarse-resolution ocean numerical experiments. Additionally, we show that increased (decreased) stratification through surface warming reduces (increases) the sensitivity of the Southern Ocean (Formula presented.) to wind stress. The scaling is then used to estimate the wind-stress induced changes of atmospheric (Formula presented.) in CMIP5 models using only a handful of parameters. The scaling is further used to model the anthropogenic carbon sink, showing a long-term reversal of the Southern Ocean sink for large wind stress strength.
More details from the publisher
Details from ORA
More details

Lagrangian ocean analysis: Fundamentals and practices

OCEAN MODELLING 121 (2018) 49-75

Authors:

E van Sebille, SM Griffies, R Abernathey, TP Adams, P Berloff, A Biastoch, B Blanke, EP Chassignet, Y Cheng, CJ Cotter, E Deleersnijder, K Doos, HF Drake, S Drijfhout, SF Gary, AW Heemink, J Kjellsson, IM Koszalka, M Lange, C Lique, GA MacGilchrist, R Marsh, CGM Adame, R McAdam, F Nencioli, CB Paris, MD Piggott, JA Polton, S Ruehs, SHAM Shah, MD Thomas, J Wang, PJ Wolfram, L Zanna, JD Zika
More details from the publisher
Details from ORA
More details

The impact of horizontal resolution on energy transfers in global ocean models

Fluids MDPI 2:3 (2017) 45

Authors:

J Kjellsson, Laure Zanna

Abstract:

The ocean is a turbulent fluid with processes acting on a variety of spatio-temporal scales. The estimates of energy fluxes between length scales allows us to understand how the mean flow is maintained as well as how mesoscale eddies are formed and dissipated. Here, we quantify the kinetic energy budget in a suite of realistic global ocean models, with varying horizontal resolution and horizontal viscosity. We show that eddy-permitting ocean models have weaker kinetic energy cascades than eddy-resolving models due to discrepancies in the effect of wind forcing, horizontal viscosity, potential to kinetic energy conversion, and nonlinear interactions on the kinetic energy (KE) budget. However, the change in eddy kinetic energy between the eddy-permitting and the eddy-resolving model is not enough to noticeably change the scale where the inverse cascade arrests or the Rhines scale. In addition, we show that the mechanism by which baroclinic flows organise into barotropic flows is weaker at lower resolution, resulting in a more baroclinic flow. Hence, the horizontal resolution impacts the vertical structure of the simulated flow. Our results suggest that the effect of mesoscale eddies can be parameterised by enhancing the potential to kinetic energy conversion, i.e., the horizontal pressure gradients, or enhancing the inverse cascade of kinetic energy.
More details from the publisher
Details from ORA

The dynamical influence of the Atlantic Multidecadal Oscillation on continental climate

Journal of Climate American Meteorological Society 30:18 (2017) 7213-7230

Authors:

Christopher H O’Reilly, Tim Woollings, Laure Zanna

Abstract:

The Atlantic multidecadal oscillation (AMO) in sea surface temperature (SST) has been shown to influence the climate of the surrounding continents. However, it is unclear to what extent the observed impact of the AMO is related to the thermodynamical influence of the SST variability or the changes in large-scale atmospheric circulation. Here, an analog method is used to decompose the observed impact of the AMO into dynamical and residual components of surface air temperature (SAT) and precipitation over the adjacent continents. Over Europe the influence of the AMO is clearest during the summer, when the warm SAT anomalies are interpreted to be primarily thermodynamically driven by warm upstream SST anomalies but also amplified by the anomalous atmospheric circulation. The overall precipitation response to the AMO in summer is generally less significant than the SAT but is mostly dynamically driven. The decomposition is also applied to the North American summer and the Sahel rainy season. Both dynamical and residual influences on the anomalous precipitation over the Sahel are substantial, with the former dominating over the western Sahel region and the latter being largest over the eastern Sahel region. The results have potential implications for understanding the spread in AMO variability in coupled climate models and decadal prediction systems.
More details from the publisher
Details from ORA
More details

Pagination

  • First page First
  • Previous page Prev
  • Page 1
  • Page 2
  • Current page 3
  • Page 4
  • Page 5
  • Page 6
  • Page 7
  • Page 8
  • Page 9
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet