Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Black Hole

Lensing of space time around a black hole. At Oxford we study black holes observationally and theoretically on all size and time scales - it is some of our core work.

Credit: ALAIN RIAZUELO, IAP/UPMC/CNRS. CLICK HERE TO VIEW MORE IMAGES.

Matteo Zennaro

Visitor

Research theme

  • Particle astrophysics & cosmology

Sub department

  • Astrophysics

Research groups

  • Beecroft Institute for Particle Astrophysics and Cosmology
matteo.zennaro@physics.ox.ac.uk
Telephone: 01865283014
Denys Wilkinson Building, room 555E
  • About
  • Publications

Robust cosmic shear with small-scale nulling

Journal of Cosmology and Astroparticle Physics IOP Publishing 2025:10 (2025) 017

Authors:

Giulia Piccirilli, Matteo Zennaro, Carlos García-García, David Alonso

Abstract:

Standard cosmological weak lensing analyses using cosmic shear are inevitably sensitive to small-scale, non-linear clustering from low-redshift structures. The need to adequately model the clustering of matter on this non-linear regime, accounting for both gravitational and baryonic effects, adds significant uncertainty to weak lensing studies, particularly in the context of near-future Stage-IV datasets. In this paper, inspired by previous work on so-called “nulling” techniques, we present a general method that selects the linear combinations of a given tomographic cosmic shear dataset that are least sensitive to small-scale non-linearities, by essentially suppressing the contribution from low-redshift structures. We apply this method to the latest public cosmic shear data from the Dark Energy Survey, DES-Y3, that corresponds to 3 years of observation, and show: a) that a large fraction of the signal is dominated by the single mode that is most affected by non-linear scales, and b) that removing this mode leads to a ∼ 1σ upwards shift in the preferred value of S 8 ≡ σ 8√(ΩM/0.3), alleviating the tension with current CMB data. However, the removal of the most contaminated mode also results in a significant increase in the statistical uncertainties. Taking this into account, we find this shift to be compatible with a random fluctuation caused by removing this most-contaminated mode at the ∼ 1.4σ level. We also show that this technique may be used by future Stage-IV surveys to mitigate the sensitivity of the final constraints to baryonic effects, trading precision for robustness.
More details from the publisher
Details from ORA

Cosmic shear with small scales: DES-Y3, KiDS-1000 and HSC-DR1

Journal of Cosmology and Astroparticle Physics IOP Publishing 2024:08 (2024) 024

Authors:

Carlos García-García, Matteo Zennaro, Giovanni Aricò, David Alonso, Raul E Angulo

Abstract:

We present a cosmological analysis of the combination of the DES-Y3, KiDS-1000 and HSC-DR1 weak lensing samples under a joint harmonic-space pipeline making use of angular scales down to ℓmax=4500, corresponding to significantly smaller scales (δθ ~ 2.4') than those commonly used in cosmological weak lensing studies. We are able to do so by accurately modelling non-linearities and the impact of baryonic effects using Baccoemu. We find S 8 ≡ σ 8√(Ωm/0.3) = 0.795+0.015 -0.017, in relatively good agreement with CMB constraints from Planck (less than ~1.8σ tension), although we obtain a low value of Ωm =0.212+0.017 -0.032, in tension with Planck at the ~3σ level. We show that this can be recast as an H0 tension if one parametrises the amplitude of fluctuations and matter abundance in terms of variables without hidden dependence on H0. Furthermore, we find that this tension reduces significantly after including a prior on the distance-redshift relationship from BAO data, without worsening the fit. In terms of baryonic effects, we show that failing to model and marginalise over them on scales ℓ ≲ 2000 does not significantly affect the posterior constraints for DES-Y3 and KiDS-1000, but has a mild effect on deeper samples, such as HSC-DR1. This is in agreement with our ability to only mildly constrain the parameters of the Baryon Correction Model with these data.
More details from the publisher
Details from ORA
More details

Galaxy bias in the era of LSST: perturbative bias expansions

Journal of Cosmology and Astroparticle Physics IOP Publishing 2024:02 (2024) 015

Authors:

Andrina Nicola, Boryana Hadzhiyska, Nathan Findlay, Carlos García-García, David Alonso, Anže Slosar, Zhiyuan Guo, Nickolas Kokron, Raúl Angulo, Alejandro Aviles, Jonathan Blazek, Jo Dunkley, Bhuvnesh Jain, Marcos Pellejero, James Sullivan, Christopher W Walter, Matteo Zennaro

Abstract:

Upcoming imaging surveys will allow for high signal-to-noise measurements of galaxy clustering at small scales. In this work, we present the results of the Rubin Observatory Legacy Survey of Space and Time (LSST) bias challenge, the goal of which is to compare the performance of different nonlinear galaxy bias models in the context of LSST Year 10 (Y10) data. Specifically, we compare two perturbative approaches, Lagrangian perturbation theory (LPT) and Eulerian perturbation theory (EPT) to two variants of Hybrid Effective Field Theory (HEFT), with our fiducial implementation of these models including terms up to second order in the bias expansion as well as nonlocal bias and deviations from Poissonian stochasticity. We consider a variety of different simulated galaxy samples and test the performance of the bias models in a tomographic joint analysis of LSST-Y10-like galaxy clustering, galaxy-galaxy-lensing and cosmic shear. We find both HEFT methods as well as LPT and EPT combined with non-perturbative predictions for the matter power spectrum to yield unbiased constraints on cosmological parameters up to at least a maximal scale of kmax = 0.4 Mpc-1 for all samples considered, even in the presence of assembly bias. While we find that we can reduce the complexity of the bias model for HEFT without compromising fit accuracy, this is not generally the case for the perturbative models. We find significant detections of non-Poissonian stochasticity in all cases considered, and our analysis shows evidence that small-scale galaxy clustering predominantly improves constraints on galaxy bias rather than cosmological parameters. These results therefore suggest that the systematic uncertainties associated with current nonlinear bias models are likely to be subdominant compared to other sources of error for tomographic analyses of upcoming photometric surveys, which bodes well for future galaxy clustering analyses using these high signal-to-noise data.

More details from the publisher
Details from ORA

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet