Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
  • Support
Menu
CMP
Credit: Jack Hobhouse

Dr Suer Zhou

Visitor - Computer account only

Sub department

  • Condensed Matter Physics
suer.zhou@physics.ox.ac.uk
  • About
  • Publications

Reactive Passivation of Wide-Bandgap Organic–Inorganic Perovskites with Benzylamine

Journal of the American Chemical Society American Chemical Society 146:40 (2024) 27405-27416

Authors:

Suer Zhou, Benjamin M Gallant, Junxiang Zhang, Yangwei Shi, Joel Smith, James N Drysdale, Pattarawadee Therdkatanyuphong, Margherita Taddei, Declan P McCarthy, Stephen Barlow, Rachel C Kilbride, Akash Dasgupta, Ashley R Marshall, Jian Wang, Dominik J Kubicki, David S Ginger, Seth R Marder, Henry J Snaith

Abstract:

While amines are widely used as additives in metal-halide perovskites, our understanding of the way amines in perovskite precursor solutions impact the resultant perovskite film is still limited. In this paper, we explore the multiple effects of benzylamine (BnAm), also referred to as phenylmethylamine, used to passivate both FA0.75Cs0.25Pb­(I0.8Br0.2)3 and FA0.8Cs0.2PbI3 perovskite compositions. We show that, unlike benzylammonium (BnA+) halide salts, BnAm reacts rapidly with the formamidinium (FA+) cation, forming new chemical products in solution and these products passivate the perovskite crystal domains when processed into a thin film. In addition, when BnAm is used as a bulk additive, the average perovskite solar cell maximum power point tracked efficiency (for 30 s) increased to 19.3% compared to the control devices 16.8% for a 1.68 eV perovskite. Under combined full spectrum simulated sunlight and 65 °C temperature, the devices maintained a better T 80 stability of close to 2500 h while the control devices have T 80 stabilities of <100 h. We obtained similar results when presynthesizing the product BnFAI and adding it directly into the perovskite precursor solution. These findings highlight the mechanistic differences between amine and ammonium salt passivation, enabling the rational design of molecular strategies to improve the material quality and device performance of metal-halide perovskites.
More details from the publisher
Details from ORA
More details
More details

Water- and heat-activated dynamic passivation for perovskite photovoltaics

Nature Springer Nature 632:8024 (2024) 294-300

Authors:

Wei-Ting Wang, Philippe Holzhey, Ning Zhou, Qiang Zhang, Suer Zhou, Elisabeth Duijnstee, Kevin J Rietwyk, Jeng-Yu Lin, Yijie Mu, Yanfeng Zhang, Udo Bach, Chun-Guey Wu, Hin-Lap Yip, Henry J Snaith, Shien-Ping Feng

Abstract:

Further improvements in perovskite solar cells require better control of ionic defects in the perovskite photoactive layer during the manufacturing stage and their usage. Here we report a living passivation strategy using a hindered urea/thiocarbamate bond Lewis acid–base material (HUBLA), where dynamic covalent bonds with water and heat-activated characteristics can dynamically heal the perovskite to ensure device performance and stability. Upon exposure to moisture or heat, HUBLA generates new agents and further passivates defects in the perovskite. This passivation strategy achieved high-performance devices with a power conversion efficiency (PCE) of 25.1 per cent. HUBLA devices retained 94 per cent of their initial PCE for approximately 1,500 hours of ageing at 85 degrees Celsius in nitrogen and maintained 88 per cent of their initial PCE after 1,000 hours of ageing at 85 degrees Celsius and 30 per cent relative humidity in air.
More details from the publisher
Details from ORA
More details
More details

Understanding the degradation of methylenediammonium and its role in phase-stabilizing formamidinium lead triiodide

Journal of the American Chemical Society American Chemical Society 145:18 (2023) 10275-10284

Authors:

Elisabeth A Duijnstee, Benjamin M Gallant, Philippe Holzhey, Dominik J Kubicki, Silvia Collavini, Bernd K Sturdza, Robin J Nicholas, Harry C Sansom, Joel Smith, Matthias J Gutmann, Santanu Saha, Murali Gedda, Mohamad I Nugraha, Manuel Kober-Czerny, Chelsea Xia, Adam D Wright, Yen-Hung Lin, Alexandra J Ramadan, Andrew Matzen, Esther Y-H Hung, Seongrok Seo, Suer Zhou, Jongchul Lim, Thomas D Anthopoulos, Marina R Filip, Michael B Johnston, Juan Luis Delgado, Henry J Snaith

Abstract:

Formamidinium lead triiodide (FAPbI3) is the leading candidate for single-junction metal–halide perovskite photovoltaics, despite the metastability of this phase. To enhance its ambient-phase stability and produce world-record photovoltaic efficiencies, methylenediammonium dichloride (MDACl2) has been used as an additive in FAPbI3. MDA2+ has been reported as incorporated into the perovskite lattice alongside Cl–. However, the precise function and role of MDA2+ remain uncertain. Here, we grow FAPbI3 single crystals from a solution containing MDACl2 (FAPbI3-M). We demonstrate that FAPbI3-M crystals are stable against transformation to the photoinactive δ-phase for more than one year under ambient conditions. Critically, we reveal that MDA2+ is not the direct cause of the enhanced material stability. Instead, MDA2+ degrades rapidly to produce ammonium and methaniminium, which subsequently oligomerizes to yield hexamethylenetetramine (HMTA). FAPbI3 crystals grown from a solution containing HMTA (FAPbI3-H) replicate the enhanced α-phase stability of FAPbI3-M. However, we further determine that HMTA is unstable in the perovskite precursor solution, where reaction with FA+ is possible, leading instead to the formation of tetrahydrotriazinium (THTZ-H+). By a combination of liquid- and solid-state NMR techniques, we show that THTZ-H+ is selectively incorporated into the bulk of both FAPbI3-M and FAPbI3-H at ∼0.5 mol % and infer that this addition is responsible for the improved α-phase stability.

More details from the publisher
Details from ORA
More details
More details
More details

Visualizing macroscopic inhomogeneities in perovskite solar cells

University of Oxford (2022)

Authors:

Akash Dasgupta, Suhas Mahesh, Pietro Caprioglio, Yen-Hung Lin, Karl-Augustin Zaininger, Robert DJ Oliver, Philippe Holzhey, Suer Zhou, Melissa McCarthy, Joel Smith, Maximilian Frenzel, M Greyson Christoforo, James Ball, Bernard Wenger, Henry J Snaith

Abstract:

This contains all data used in the paper: ACS Energy Lett. 2022, 7, 7, 2311–2322, DOI: https://doi.org/10.1021/acsenergylett.2c01094. Data has been sorted into raw and processed, and organised by which figure they appear in. Arrays require Python and the numpy package to load (np.load('filename.npy')). All other data is in text format of some form, easily openable. Some plots require Origin labs to open, but no data in these files are inaccessible from the txt files/ csvs etc.
More details from the publisher
Details from ORA

Low-cost dopant-free carbazole enamine hole-transporting materials for thermally stable perovskite solar cells

Solar RRL Wiley 6:11 (2021) 2100984

Authors:

Suer Zhou, Maryte Daskeviciene, Matas Steponaitis, Giedre Bubniene, Vygintas Jankauskas, Kelly Schutt, Philippe Holzhey, Ashley R Marshall, Pietro Caprioglio, Grey Christoforo, James M Ball, Tadas Malinauskas, Vytautas Getautis, Henry J Snaith

Abstract:

Perovskite solar cells deliver high efficiencies, but are often made from high-cost bespoke chemicals, such as the archetypical hole-conductor, 2,2′,7,7′-tetrakis(N,N-di-p-methoxy-phenylamine)-9-9′-spirobifluorene (spiro-OMeTAD). Herein, new charge-transporting carbazole-based enamine molecules are reported. The new hole conductors do not require chemical oxidation to reach high power conversion efficiencies (PCEs) when employed in n-type-intrinsic-p-type perovskite solar cells; thus, reducing the risk of moisture degrading the perovskite layer through the hydrophilicity of oxidizing additives that are typically used with conventional hole conductors. Devices made with these new undoped carbazole-based enamines achieve comparable PCEs to those employing doped spiro-OMeTAD, and greatly enhanced stability under 85 °C thermal aging; maintaining 83% of their peak efficiency after 1000 h, compared with spiro-OMeTAD-based devices that degrade to 26% of the peak PCE within 24 h. Furthermore, the carbazole-based enamines can be synthesized without the use of organometallic catalysts and complicated purification techniques, lowering the material cost by one order of magnitude compared with spiro-OMeTAD. As a result, we calculate that the overall manufacturing costs of future photovoltaic (PV) modules are reduced, making the levelized cost of electricity competitive with silicon PV modules.
More details from the publisher
Details from ORA
More details

Pagination

  • Current page 1
  • Page 2
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Giving to Physics
  • Current students
  • Staff intranet