The vertical distribution of volcanic SO2 plumes measured by IASI
Atmospheric Chemistry and Physics European Geosciences Union 16:7 (2016) 4343-4367
Abstract:
Sulfur dioxide (SO2) is an important atmospheric constituent that plays a crucial role in many atmospheric processes. Volcanic eruptions are a significant source of atmospheric SO2 and its effects and lifetime depend on the SO2 injection altitude. The Infrared Atmospheric Sounding Interferometer (IASI) on the METOP satellite can be used to study volcanic emission of SO2 using high-spectral resolution measurements from 1000 to 1200 and from 1300 to 1410 cm−1 (the 7.3 and 8.7 µm SO2 bands) returning both SO2 amount and altitude data. The scheme described in Carboni et al. (2012) has been applied to measure volcanic SO2 amount and altitude for 14 explosive eruptions from 2008 to 2012. The work includes a comparison with the following independent measurements: (i) the SO2 column amounts from the 2010 Eyjafjallajökull plumes have been compared with Brewer ground measurements over Europe; (ii) the SO2 plumes heights, for the 2010 Eyjafjallajökull and 2011 Grimsvötn eruptions, have been compared with CALIPSO backscatter profiles. The results of the comparisons show that IASI SO2 measurements are not affected by underlying cloud and are consistent (within the retrieved errors) with the other measurements. The series of analysed eruptions (2008 to 2012) show that the biggest emitter of volcanic SO2 was Nabro, followed by Kasatochi and Grímsvötn. Our observations also show a tendency for volcanic SO2 to reach the level of the tropopause during many of the moderately explosive eruptions observed. For the eruptions observed, this tendency was independent of the maximum amount of SO2 (e.g. 0.2 Tg for Dalafilla compared with 1.6 Tg for Nabro) and of the volcanic explosive index (between 3 and 5).Linguistic analysis of IPCC summaries for policymakers and associated coverage
Nature Climate Change Springer Nature 6:3 (2016) 311-316
Retrieving the real refractive index of mono- and polydisperse colloids from reflectance near the critical angle.
Optics express 24:3 (2016) 1953-1972
Abstract:
We investigate the accuracy in retrieving the real refractive index of submicron aerosol particles, at a visible wavelength, from near critical angle reflectance measurements of a dilute suspension of the aerosol. A coherent scattering model (CSM) is used to model the coherent reflectance from the colloidal suspension. We use an extension of the model for polydisperse particles to properly account for the modified size distribution close to the incident medium to colloid interface. We perform a rigorous sensitivity analysis, for both the monodisperse and polydisperse models, to determine how experimental uncertainties propagate into uncertainty in the retrieval of real refractive index. The effect of non-spherical scattering was included in the sensitivity analysis by using T-matrix methods. Experimental reflectance data, at a wavelength of 635 nm, were obtained for monodisperse spherical latex particles, a polydisperse sand sample and a polydisperse volcanic ash sample. We show that the retrieved real refractive index for these particles is consistent with values obtained using other techniques.A Multi-Sensor Approach for Volcanic Ash Cloud Retrieval and Eruption Characterization: The 23 November 2013 Etna Lava Fountain
Remote Sensing MDPI 8:1 (2016) 58
Validation of ASH Optical Depth and Layer Height from IASI using Earlinet Lidar Data
EPJ Web of Conferences EDP Sciences 119 (2016) 07006