Lensing is low: Cosmology, galaxy formation, or new physics?

Monthly Notices of the Royal Astronomical Society Oxford University Press 467:3 (2017) 3024-3047

Authors:

Alexie Leauthaud, Shun Saito, Stefan Hilbert, Alexandre Barreira, Surhud More, Martin White, Shadab Alam, Peter Behroozi, Kevin Bundy, Jean Coupon, Thomas Erben, Catherine Heymans, Hendrik Hildebrandt, Rachel Mandelbaum, Lance Miller, Bruno Moraes, Maria ES Pereira, Sergio A Rodriguez-Torres, Fabian Schmidt, Huan-Yuan Shan, Matteo Viel, Francesco Villaescusa-Navarro

Abstract:

We present high signal-to-noise galaxy-galaxy lensing measurements of the BOSS CMASS sample using 250 square degrees of weak lensing data from CFHTLenS and CS82. We compare this signal with predictions from mock catalogs trained to match observables including the stellar mass function and the projected and two dimensional clustering of CMASS. We show that the clustering of CMASS, together with standard models of the galaxy-halo connection, robustly predicts a lensing signal that is 20-40% larger than observed. Detailed tests show that our results are robust to a variety of systematic effects. Lowering the value of $S_{\rm 8}=\sigma_{\rm 8} \sqrt{\Omega_{\rm m}/0.3}$ compared to Planck2015 reconciles the lensing with clustering. However, given the scale of our measurement ($r<10$ $h^{-1}$ Mpc), other effects may also be at play and need to be taken into consideration. We explore the impact of baryon physics, assembly bias, massive neutrinos, and modifications to general relativity on $\Delta\Sigma$ and show that several of these effects may be non-negligible given the precision of our measurement. Disentangling cosmological effects from the details of the galaxy-halo connection, the effects of baryons, and massive neutrinos, is the next challenge facing joint lensing and clustering analyses. This is especially true in the context of large galaxy samples from Baryon Acoustic Oscillation surveys with precise measurements but complex selection functions.

GMRT 610-MHz observations of the faint radio source population – and what these tell us about the higher radio-frequency sky

Monthly Notices of the Royal Astronomical Society Oxford University Press 464:3 (2017) 3357-3368

Authors:

IH Whittam, DA Green, Matthew Jarvis, JM Riley

Abstract:

We present 610-MHz Giant Metrewave Radio Telescope observations of 0.84 deg2 of the AMI001 field (centred on 00h23m10s, +31°53΄) with an rms noise of 18 μJy beam−1 in the centre of the field. A total of 955 sources are detected, and 814 are included in the source count analysis. The source counts from these observations are consistent with previous work. We have used these data to study the spectral index distribution of a sample of sources selected at 15.7 GHz from the recent deep extension to the Tenth Cambridge (10C) survey. The median spectral index, α, (where S ∝ ν−α) between 0.08

CFHTLenS and RCSLenS: testing photometric redshift distributions using angular cross-correlations with spectroscopic galaxy surveys

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 463:4 (2016) 3737-3754

Authors:

A Choi, C Heymans, C Blake, H Hildebrandt, CAJ Duncan, T Erben, R Nakajima, L Van Waerbeke, M Viola

RCSLenS: the Red Cluster Sequence Lensing Survey

Monthly Notices of the Royal Astronomical Society Oxford University Press 463:1 (2016) 635-654

Authors:

H Hildebrandt, A Choi, C Heymans, C Blake, T Erben, Lance Miller, R Nakajima, L van Waerbeke, M Viola, A Buddendiek, J Harnois-Déraps, A Hojjati, B Joachimi, S Joudaki, TD Kitching, C Wolf, S Gwyn, N Johnson, K Kuijken, Z Sheikhbahaee, A Tudorica, HKC Yee

Abstract:

We present the Red-sequence Cluster Lensing Survey (RCSLenS), an application of the methods developed for the Canada France Hawaii Telescope Lensing Survey (CFHTLenS) to the ~785deg$^2$, multi-band imaging data of the Red-sequence Cluster Survey 2 (RCS2). This project represents the largest public, sub-arcsecond seeing, multi-band survey to date that is suited for weak gravitational lensing measurements. With a careful assessment of systematic errors in shape measurements and photometric redshifts we extend the use of this data set to allow cross-correlation analyses between weak lensing observables and other data sets. We describe the imaging data, the data reduction, masking, multi-colour photometry, photometric redshifts, shape measurements, tests for systematic errors, and a blinding scheme to allow for more objective measurements. In total we analyse 761 pointings with r-band coverage, which constitutes our lensing sample. Residual large-scale B-mode systematics prevent the use of this shear catalogue for cosmic shear science. The effective number density of lensing sources over an unmasked area of 571.7deg$^2$ and down to a magnitude limit of r~24.5 is 8.1 galaxies per arcmin$^2$ (weighted: 5.5 arcmin$^{-2}$) distributed over 14 patches on the sky. Photometric redshifts based on 4-band griz data are available for 513 pointings covering an unmasked area of 383.5 deg$^2$ We present weak lensing mass reconstructions of some example clusters as well as the full survey representing the largest areas that have been mapped in this way. All our data products are publicly available through CADC at http://www.cadc-ccda.hia-iha.nrc-cnrc.gc.ca/en/community/rcslens/query.html in a format very similar to the CFHTLenS data release.

KiDS-450: Cosmological parameter constraints from tomographic weak gravitational lensing

Monthly Notices of the Royal Astronomical Society 465:2 (2016) 1-50

Authors:

H Hildebrandt, M Viola, C Heymans, S Joudaki, K Kuijken, C Blake, T Erben, B Joachimi, D Klaes, L Miller, CB Morrison, R Nakajima, G Verdoes Kleijn, A Amon, A Choi, G Covone, JTA de Jong, A Dvornik, I Fenech Conti, A Grado, J Harnois-Déraps, R Herbonnet, H Hoekstra, F Köhlinger, J McFarland, A Mead, J Merten, N Napolitano, JA Peacock, M Radovich, P Schneider, P Simon, EA Valentijn, JL van den Busch, E van Uitert, L Van Waerbeke

Abstract:

We present cosmological parameter constraints from a tomographic weak gravitational lensing analysis of ~450 deg 2 of imaging data from the Kilo Degree Survey (KiDS). For a flat λCDM cosmology with a prior on H 0 that encompasses the most recent direct measurements, we find S 8 ≡ σ 8 √ω m /0.3 = 0.745±0.039. This result is in good agreement with other low redshift probes of large scale structure, including recent cosmic shear results, along with pre-Planck cosmic microwave background constraints. A 2.3-σ tension in S 8 and `substantial discordance' in the full parameter space is found with respect to the Planck 2015 results. We use shear measurements for nearly 15 million galaxies, determined with a new improved `self-calibrating' version of lens fit validated using an extensive suite of image simulations. Four-band ugri photometric redshifts are calibrated directly with deep spectroscopic surveys. The redshift calibration is confirmed using two independent tech- niques based on angular cross-correlations and the properties of the photometric redshift probability distributions. Our covariance matrix is determined using an analytical approach, verified numeri- cally with large mock galaxy catalogues. We account for uncertainties in the modelling of intrinsic galaxy alignments and the impact of baryon feedback on the shape of the non-linear matter power spectrum, in addition to the small residual uncertainties in the shear and redshift calibration. The cosmology analysis was performed blind. Our high-level data products, including shear correlation functions, covariance matrices, redshift distributions, and Monte Carlo Markov Chains.