Weak-lensing mass calibration of the Atacama Cosmology Telescope equatorial Sunyaev-Zeldovich cluster sample with the Canada-France-Hawaii telescope stripe 82 survey

Journal of Cosmology and Astroparticle Physics IOP Publishing 2016:08 (2016) 013

Authors:

N Battaglia, A Leauthaud, H Miyatake, M Hasselfield, MB Gralla, R Allison, JR Bond, E Calabrese, D Crichton, MJ Devlin, J Dunkley, R Dünner, T Erben, S Ferrara, M Halpern, M Hilton, JC Hill, AD Hincks, R Hložek, KM Huffenberger, JP Hughes, JP Kneib, A Kosowsky, M Makler, TA Marriage, F Menanteau, Lance Miller, K Moodley, B Moraes, MD Niemack, L Page, H Shan, N Sehgal, BD Sherwin, JL Sievers, C Sifón, DN Spergel, ST Staggs, JE Taylor, R Thornton, LV Waerbeke, EJ Wollack

Abstract:

Mass calibration uncertainty is the largest systematic effect for using clusters of galaxies to constrain cosmological parameters. We present weak lensing mass measurements from the Canada-France-Hawaii Telescope Stripe 82 Survey for galaxy clusters selected through their high signal-to-noise thermal Sunyaev-Zeldovich (tSZ) signal measured with the Atacama Cosmology Telescope (ACT). For a sample of 9 ACT clusters with a tSZ signal-to-noise greater than five the average weak lensing mass is (4.8±0.8) ×1014 Mo, consistent with the tSZ mass estimate of (4.70±1.0) ×1014 Mo which assumes a universal pressure profile for the cluster gas. Our results are consistent with previous weak-lensing measurements of tSZ-detected clusters from the Planck satellite. When comparing our results, we estimate the Eddington bias correction for the sample intersection of Planck and weak-lensing clusters which was previously excluded.

The SuperCOSMOS all-sky galaxy catalogue

Monthly Notices of the Royal Astronomical Society Oxford University Press 462:2 (2016) 2085-2098

Authors:

JA Peacock, NC Hambly, M Bilicki, HT MacGillivray, Lance Miller, MA Read, SB Tritton

Abstract:

We describe the construction of an all-sky galaxy catalogue, using SuperCOSMOS scans of Schmidt photographic plates from theUKSchmidt Telescope and Second Palomar Observatory Sky Survey. The photographic photometry is calibrated using Sloan Digital Sky Survey data, with results that are linear to 2 per cent or better. All-sky photometric uniformity is achieved by matching plate overlaps and also by requiring homogeneity in optical-to-2MASS colours, yielding zero-points that are uniform to 0.03 mag or better. The typical AB depths achieved are BJ < 21, RF < 19.5 and IN < 18.5, with little difference between hemispheres. In practice, the IN plates are shallower than the BJ and RF plates, so for most purposes we advocate the use of a catalogue selected in these two latter bands. At high Galactic latitudes, this catalogue is approximately 90 per cent complete with 5 per cent stellar contamination; we quantify how the quality degrades towards the Galactic plane. At low latitudes, there are many spurious galaxy candidates resulting from stellar blends: these approximately match the surface density of true galaxies at |b| = 30°. Above this latitude, the catalogue limited in BJ and RF contains in total about 20 million galaxy candidates, of which 75 per cent are real. This contamination can be removed, and the sky coverage extended, by matching with additional data sets. This SuperCOSMOS catalogue has been matched with 2MASS and with WISE, yielding quasiall- sky samples of respectively 1.5 million and 18.5 million galaxies, to median redshifts of 0.08 and 0.20. This legacy data set thus continues to offer a valuable resource for large-angle cosmological investigations.

CFHTLenS and RCSLenS cross-correlation with Planck lensing detected in fourier and configuration space

Monthly Notices of the Royal Astronomical Society 460:1 (2016) 434-457

Authors:

J Harnois-Déraps, T Tröster, A Hojjati, L van Waerbeke, M Asgari, A Choi, T Erben, C Heymans, H Hildebrandt, TD Kitching, L Miller, R Nakajima, M Viola, S Arnouts, J Coupon, T Moutard

RadioLensfit: bayesian weak lensing measurement in the visibility domain

Sissa Medialab Srl (2016) 033

Authors:

Marzia Rivi, Lance Miller, Sphesihle Makhathini, Filipe Batoni Abdalla

The stellar-to-halo mass relation of GAMA galaxies from 100 deg 2 of KiDS weak lensing data

Monthly Notices of the Royal Astronomical Society Oxford University Press 459:3 (2016) 3251-3270

Authors:

E van Uitert, M Cacciato, H Hoekstra, M Brouwer, C Sifón, M Viola, I Baldry, J Bland-Hawthorn, S Brough, MJI Brown, A Choi, SP Driver, T Erben, C Heymans, H Hildebrandt, B Joachimi, K Kuijken, J Liske, J Loveday, J McFarland, Lance Miller, R Nakajima, J Peacock, M Radovich, ASG Robotham, P Schneider, G Sikkema, EN Taylor, G Verdoes Kleijn

Abstract:

We study the stellar-to-halo mass relation of central galaxies in the range 9.7 < log10(M*/h-2 M⊙) < 11.7 and z < 0.4, obtained from a combined analysis of the Kilo Degree Survey (KiDS) and the Galaxy And Mass Assembly (GAMA) survey. We use ~100 deg2 of KiDS data to study the lensing signal around galaxies for which spectroscopic redshifts and stellar masses were determined by GAMA. We show that lensing alone results in poor constraints on the stellar-to-halo mass relation due to a degeneracy between the satellite fraction and the halo mass, which is lifted when we simultaneously fit the stellar mass function. At M* > 5 × 1010 h-2 M⊙, the stellar mass increases with halo mass as ~Mh0.25. The ratio of dark matter to stellar mass has a minimum at a halo mass of 8 × 1011 h-1 M⊙ with a value of Mh/M* = 56-10+16 [h]. We also use the GAMA group catalogue to select centrals and satellites in groups with five or more members, which trace regions in space where the local matter density is higher than average, and determine for the first time the stellar-to-halo mass relation in these denser environments. We find no significant differences compared to the relation from the full sample, which suggests that the stellar-to-halo mass relation does not vary strongly with local density. Furthermore, we find that the stellar-to-halo mass relation of central galaxies can also be obtained by modelling the lensing signal and stellar mass function of satellite galaxies only, which shows that the assumptions to model the satellite contribution in the halo model do not significantly bias the stellar-to-halo mass relation. Finally, we show that the combination of weak lensing with the stellar mass function can be used to test the purity of group catalogues.