Intrinsic alignments of galaxies in the Horizon-AGN cosmological hydrodynamical simulation
Monthly Notices of the Royal Astronomical Society Oxford University Press 454:3 (2015) 2736-2753
Abstract:
The intrinsic alignments of galaxies are recognised as a contaminant to weak gravitational lensing measurements. In this work, we study the alignment of galaxy shapes and spins at low redshift ($z\sim 0.5$) in Horizon-AGN, an adaptive-mesh-refinement hydrodynamical cosmological simulation box of 100 Mpc/h a side with AGN feedback implementation. We find that spheroidal galaxies in the simulation show a tendency to be aligned radially towards over-densities in the dark matter density field and other spheroidals. This trend is in agreement with observations, but the amplitude of the signal depends strongly on how shapes are measured and how galaxies are selected in the simulation. Disc galaxies show a tendency to be oriented tangentially around spheroidals in three-dimensions. While this signal seems suppressed in projection, this does not guarantee that disc alignments can be safely ignored in future weak lensing surveys. The shape alignments of luminous galaxies in Horizon-AGN are in agreement with observations and other simulation works, but we find less alignment for lower luminosity populations. We also characterize the systematics of galaxy shapes in the simulation and show that they can be safely neglected when measuring the correlation of the density field and galaxy ellipticities.Dark matter halo properties of GAMA galaxy groups from 100 square degrees of KiDS weak lensing data
Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 452:4 (2015) 3529-3550
Exploring the faint source population at 15.7 GHz
Proceedings of Science International School for Advanced Studies (Trieste) (2015)
Abstract:
We discuss our current understanding of the nature of the faint, high-frequency radio sky. The Tenth Cambridge (10C) survey at 15.7 GHz is the deepest high-frequency radio survey to date, covering 12 square degrees to a completeness limit of 0.5 mJy, making it the ideal starting point from which to study this population. In this work we have matched the 10C survey to several lower-frequency radio catalogues and a wide range of multi-wavelength data (near- and far-infrared, optical and X-ray). We find a significant increase in the proportion of flat-spectrum sources at flux densities below 1 mJy - the median radio spectral index between 15.7 GHz and 610 MHz changes from 0.75 for flux densities greater than 1.5 mJy to 0.08 for flux densities less than 0.8 mJy. The multi-wavelength analysis shows that the vast majority (> 94 percent) of the 10C sources are radio galaxies; it is therefore likely that these faint, flat spectrum sources are a result of the cores of radio galaxies becoming dominant at high frequencies. We have used new observations to extend this study to even fainter flux densities, calculating the 15.7-GHz radio source count down to 0.1 mJy, a factor of five deeper than previous studies. There is no evidence for a new population of sources, showing that the high-frequency sky continues to be dominated by radio galaxies down to at least 0.1 mJy.CFHTLenS: weak lensing calibrated scaling relations for low-mass clusters of galaxies
Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 451:2 (2015) 1460-1481
The faint radio source population at 15.7 GHz - II. Multi-wavelength properties
Monthly Notices Of The Royal Astronomical Society Oxford University Press 453:4 (2015) 4244-4263