The 2dF BL Lac Survey
ArXiv astro-ph/0202386 (2002)
Abstract:
We have optically identified a sample of 56 featureless continuum objects without significant proper motion from the 2dF QSO Redshift Survey (2QZ). The steep number--magnitude relation of the sample, $n(\bj) \propto 10^{0.7\bj}$, is similar to that derived for QSOs in the 2QZ and inconsistent with any population of Galactic objects. Follow up high resolution, high signal-to-noise, spectroscopy of five randomly selected objects confirms the featureless nature of these sources. Assuming the objects in the sample to be largely featureless AGN, and using the QSO evolution model derived for the 2QZ, we predict the median redshift of the sample to be $z=1.1$. This model also reproduces the observed number-magnitude relation of the sample using a renormalisation of the QSO luminosity function, $\Phi^* = \Phi^*_{\rm \sc qso}/66 \simeq 1.65 \times 10^{-8} $mag$^{-1}$Mpc$^{-3}$. Only $\sim$20 per cent of the objects have a radio flux density of $S_{1.4}>3 $mJy, and further VLA observations at 8.4 GHz place a $5\sigma$ limit of $S_{8.4} < 0.2$mJy on the bulk of the sample. We postulate that these objects could form a population of radio-weak AGN with weak or absent emission lines, whose optical spectra are indistinguishable from those of BL Lac objects.A first look at cataclysmic variable stars from the 2dF QSO survey
ArXiv astro-ph/0108334 (2001)
Abstract:
The 2dF QSO survey is a spectroscopic survey of 48,000 point-sources selected by colour with magnitudes in the range 18.35 < B < 20.95. Amongst QSOs, white dwarfs, narrow-line galaxies and other objects are some cataclysmic variables (CVs). This survey should be sensitive to intrinsically faint CVs. In the standard picture of CV evolution, these form the majority of the CV population. We present the spectra of 6 CVs from this survey. Four have the spectra of dwarf novae and two are magnetic CVs. We present evidence that suggests that the dwarf novae have period P < 2 h and are indeed intrinsically less luminous than average. However, it is not clear yet whether these systems are present in the large numbers predicted.The 2dF QSO Redshift Survey - VIII. Absorption systems in the 10k catalogue
ArXiv astro-ph/0107460 (2001)
Abstract:
We examine the highest S/N spectra from the 2QZ 10k release and identify over 100 new low-ionisation heavy element absorbers; DLA candidates suitable for higher resolution follow-up observations. These absorption systems map the spatial distribution of high-z metals in exactly the same volumes that the foreground 2QZ QSOs themselves sample and hence the 2QZ gives us the unique opportunity to directly compare the two tracers of large scale structure. We examine the cross-correlation of the two populations to see how they are relatively clustered, and, by considering the colour of the QSOs, detect a small amount of dust in these metal systems.The 2dF QSO Redshift Survey - VI. Measuring Lambda and Beta from Redshift-space Distortions in the Power Spectrum
ArXiv astro-ph/0106012 (2001)
Abstract:
When the 2dF QSO Redshift Survey (2QZ) is complete, a powerful geometric test for the cosmological constant will be available. By comparing the clustering along and across the line of sight and modelling the effects of peculiar velocities and bulk motions in redshift space, geometric distortions, which occur if the wrong cosmology is assumed, can be detected. In this paper we investigate the effect of geometric and redshift-space distortions in the power spectrum parallel and perpendicular to the observer's line of sight. Ballinger et al. developed a model to estimate the cosmological constant, $\Lambda$, and the important parameter $\beta \approx \Omega_m^{0.6}/b$ from these distortions. We apply this model to a detailed simulation of the final 25k 2QZ, produced using the Virgo Consortium's huge {\it Hubble Volume} N-body $\Lambda$-CDM light cone simulation. We confirm the conclusions of Ballinger et al.; the shape of the redshift-space and geometric distortions are very similar. When all the uncertainties are taken into account we find that only a joint $\Lambda - \beta$ constraint is possible. By combining this result with a second constraint based on mass clustering evolution, however, we can make significant progress. We predict that this method should allow us to constrain $\beta$ to approximately $\pm0.1$, and $\Omega_{m}$ to $\pm0.25$ using the final catalogue. We apply the method to the 2QZ catalogue of 10000 QSOs and find that this incomplete catalogue marginally favours a $\Lambda$ cosmology.The 2dF QSO Redshift Survey - V. The 10k catalogue
Monthly Notices of the Royal Astronomical Society 322:4 (2001)