CTA sensitivity for probing cosmology and fundamental physics with gamma rays
Proceedings of Science 395 (2022)
Abstract:
The Cherenkov Telescopic Array (CTA), the next-generation ground-based gamma-ray observatory, will have unprecedented sensitivity, providing answers to open questions in gamma-ray cosmology and fundamental physics. Using simulations of active galactic nuclei observations foreseen in the CTA Key Science Program, we find that CTA will measure gamma-ray absorption on the extragalactic background light with a statistical error below 15% up to the redshift of 2 and detect or establish limits on gamma halos induced by the intergalactic magnetic field of at least 0.3 pG. Extragalactic observations using CTA also demonstrate the potential for testing physics beyond the Standard Model. The best state-of-the-art constraints on the Lorentz invariance violation from astronomical gamma-ray observations will be improved at least two- to threefold. CTA will also probe the parameter space where axion-like particles can represent a significant proportion – if not all – of dark matter. Joint multiwavelength and multimessenger observations, carried out together with other future observatories, will further foster the growth of gamma-ray cosmology.Characterization of the PeV astrophysical neutrino energy spectrum with IceCube using down-going tracks
Proceedings of Science 395 (2022)
Abstract:
The IceCube Neutrino Observatory has observed a diffuse flux of astrophysical neutrinos with energies from TeV to a few PeV. Recent IceCube analyses have limited sensitivity to PeV neutrinos because upward-going neutrino fluxes are attenuated by the Earth while the Extremely High Energy (EHE) result targets cosmogenic neutrinos only above 10 PeV. In this work, we present a new event selection that fills the gap between 1 PeV and 10 PeV. This sample is obtained by selecting high-energy down-going through-going tracks from 8 years of data. To reduce the atmospheric muon backgrounds and achieve a high signal-to-background ratio, we combine two techniques. The first technique selects events with high stochasticity because single muons created by neutrinos lose energy more stochastically than atmospheric muon bundles whose energy losses are smoothened due to large muon multiplicities. The second technique uses the IceTop surface array as a veto of atmospheric background events. To characterize the astrophysical neutrino flux and test the existence of a cut-off in the neutrino energy spectrum at a few PeV, a global fit will be performed by combining this sample with results from the 7-year High Energy Starting Events (HESE) analysis.Combining Maximum-Likelihood with Deep Learning for Event Reconstruction in IceCube
Proceedings of Science 395 (2022)
Abstract:
The field of deep learning has become increasingly important for particle physics experiments, yielding a multitude of advances, predominantly in event classification and reconstruction tasks. Many of these applications have been adopted from other domains. However, data in the field of physics are unique in the context of machine learning, insofar as their generation process and the laws and symmetries they abide by are usually well understood. Most commonly used deep learning architectures fail at utilizing this available information. In contrast, more traditional likelihood-based methods are capable of exploiting domain knowledge, but they are often limited by computational complexity. In this contribution, a hybrid approach is presented that utilizes generative neural networks to approximate the likelihood, which may then be used in a traditional maximum-likelihood setting. Domain knowledge, such as invariances and detector characteristics, can easily be incorporated in this approach. The hybrid approach is illustrated by the example of event reconstruction in IceCube.Design, performance, and analysis of a measurement of optical properties of antarctic ice below 400 nm
Proceedings of Science 395 (2022)
Abstract:
The IceCube Neutrino Observatory, located at the geographic South Pole, is the world’s largest neutrino telescope, instrumenting 1 km3 of Antarctic ice with 5160 photosensors to detect Cherenkov light. For the IceCube Upgrade, to be deployed during the 2022-23 polar field season, and the enlarged detector IceCube-Gen2 several new optical sensor designs are under development. One of these optical sensors, the Wavelength-shifting Optical Module (WOM), uses wavelength-shifting and light-guiding techniques to measure Cherenkov photons in the UV range from 250 nm to 380 nm. In order to understand the potential gains from this new technology, a measurement of the scattering and absorption lengths of UV light was performed in the SPICEcore borehole at the South Pole during the winter seasons of 2018/2019 and 2019/2020. For this purpose, a calibration device with a UV light source and a detector using the wavelength shifting technology was developed. We present the design of the developed calibration device, its performance during the measurement campaigns, and the comparison of data to a Monte Carlo simulation.Detection methods for the Cherenkov Telescope Array at very-short exposure times
Proceedings of Science 395 (2022)