Prospects for Cherenkov Telescope Array observations of the young supernova remnant RX J1713.7−3946

Astrophysical Journal American Astronomical Society 840:2 (2017) 74

Authors:

F Acero, R Aloisio, J Amans, G Cotter, A De Franco, Subir Sarkar, JJ Watson, Et Et al.

Abstract:

We perform simulations for future Cherenkov Telescope Array (CTA) observations of RX J1713.7−3946, a young supernova remnant (SNR) and one of the brightest sources ever discovered in very high energy (VHE) gamma rays. Special attention is paid to exploring possible spatial (anti)correlations of gamma rays with emission at other wavelengths, in particular X-rays and CO/H i emission. We present a series of simulated images of RX J1713.7−3946 for CTA based on a set of observationally motivated models for the gamma-ray emission. In these models, VHE gamma rays produced by high-energy electrons are assumed to trace the nonthermal X-ray emission observed by XMM-Newton, whereas those originating from relativistic protons delineate the local gas distributions. The local atomic and molecular gas distributions are deduced by the NANTEN team from CO and H i observations. Our primary goal is to show how one can distinguish the emission mechanism(s) of the gamma rays (i.e., hadronic versus leptonic, or a mixture of the two) through information provided by their spatial distribution, spectra, and time variation. This work is the first attempt to quantitatively evaluate the capabilities of CTA to achieve various proposed scientific goals by observing this important cosmic particle accelerator.

The IceCube realtime alert system

Astroparticle Physics Elsevier 92 (2017) 30-41

Authors:

M Ackermann, J Adams, Subir Sarkar

Abstract:

Although high-energy astrophysical neutrinos were discovered in 2013, their origin is still unknown. Aiming for the identification of an electromagnetic counterpart of a rapidly fading source, we have implemented a realtime analysis framework for the IceCube neutrino observatory. Several analyses selecting neutrinos of astrophysical origin are now operating in realtime at the detector site in Antarctica and are producing alerts for the community to enable rapid follow-up observations. The goal of these observations is to locate the astrophysical objects responsible for these neutrino signals. This paper highlights the infrastructure in place both at the South Pole site and at IceCube facilities in the north that have enabled this fast follow-up program to be implemented. Additionally, this paper presents the first realtime analyses to be activated within this framework, highlights their sensitivities to astrophysical neutrinos and background event rates, and presents an outlook for future discoveries.

Improved Detection of Supernovae with the IceCube Observatory

ArXiv 1704.03823 (2017)

PINGU: a vision for neutrino and particle physics at the South Pole

IOP Publishing 44:5 (2017) 054006

Authors:

MG Aartsen, K Abraham, M Ackermann, Subir Sarkar, Et Et al.

Abstract:

The Precision IceCube Next Generation Upgrade (PINGU) is a proposed lowenergy in-fill extension to the IceCube Neutrino Observatory. With detection technology modeled closely on the successful IceCube example, PINGU will provide a 6 Mton effective mass for neutrino detection with an energy threshold of a few GeV. With an unprecedented sample of over 60 000 atmospheric neutrinos per year in this energy range, PINGU will make highly competitive measurements of neutrino oscillation parameters in an energy range over an order of magnitude higher than long-baseline neutrino beam experiments. PINGU will measure the mixing parameters Θ23 and Δm232, including the octant of Θ23 for a wide range of values, and determine the neutrino mass ordering at 3σ median significance within five years of operation. PINGU's high precision measurement of the rate of nt appearance will provide essential tests of the unitarity of the 3 ×3 PMNS neutrino mixing matrix. PINGU will also improve the sensitivity of searches for low mass dark matter in the Sun, use neutrino tomography to directly probe the composition of the Earth's core, and improve IceCube's sensitivity to neutrinos from Galactic supernovae. Reoptimization of the PINGU design has permitted substantial reduction in both cost and logistical requirements while delivering performance nearly identical to configurations previously studied.

High redshift radio galaxies and divergence from the CMB dipole

(2017)

Authors:

J Colin, R Mohayaee, M Rameez, S Sarkar