Search for Relativistic Magnetic Monopoles with IceCube

ArXiv 1208.4861 (2012)

Authors:

IceCube Collaboration, R Abbasi, Y Abdou, M Ackermann, J Adams, JA Aguilar, M Ahlers, D Altmann, K Andeen, J Auffenberg, X Bai, M Baker, SW Barwick, V Baum, R Bay, K Beattie, JJ Beatty, S Bechet, J Becker Tjus, K-H Becker, M Bell, ML Benabderrahmane, S BenZvi, J Berdermann, P Berghaus, D Berley, E Bernardini, D Bertrand, DZ Besson, D Bindig, M Bissok, E Blaufuss, J Blumenthal, DJ Boersma, C Bohm, D Bose, S Böser, O Botner, L Brayeur, AM Brown, R Bruijn, J Brunner, S Buitink, M Carson, J Casey, M Casier, D Chirkin, B Christy, F Clevermann, S Cohen, DF Cowen, AH Cruz Silva, M Danninger, J Daughhetee, JC Davis, C De Clercq, F Descamps, P Desiati, G de Vries-Uiterweerd, T DeYoung, JC Díaz-Vélez, J Dreyer, JP Dumm, M Dunkman, R Eagan, J Eisch, RW Ellsworth, O Engdegård, S Euler, PA Evenson, O Fadiran, AR Fazely, A Fedynitch, J Feintzeig, T Feusels, K Filimonov, C Finley, T Fischer-Wasels, S Flis, A Franckowiak, R Franke, K Frantzen, T Fuchs, TK Gaisser, J Gallagher, L Gerhardt, L Gladstone, T Glüsenkamp, A Goldschmidt, JA Goodman, D Góra, D Grant, A Groß, S Grullon, M Gurtner, C Ha, A Haj Ismail, A Hallgren, F Halzen, K Hanson, D Heereman, P Heimann, D Heinen, K Helbing, R Hellauer, S Hickford, GC Hill, KD Hoffman, R Hoffmann, A Homeier, K Hoshina, W Huelsnitz, PO Hulth, K Hultqvist, S Hussain, A Ishihara, E Jacobi, J Jacobsen, GS Japaridze, O Jlelati, A Kappes, T Karg, A Karle, J Kiryluk, F Kislat, J Kläs, SR Klein, J-H Köhne, G Kohnen, H Kolanoski, L Köpke, C Kopper, S Kopper, DJ Koskinen, M Kowalski, M Krasberg, G Kroll, J Kunnen, N Kurahashi, T Kuwabara, M Labare, K Laihem, H Landsman, MJ Larson, R Lauer, M Lesiak-Bzdak, J Lünemann, J Madsen, R Maruyama, K Mase, HS Matis, F McNally, K Meagher, M Merck, P Mészáros, T Meures, S Miarecki, E Middell, N Milke, J Miller, L Mohrmann, T Montaruli, R Morse, SM Movit, R Nahnhauer, U Naumann, SC Nowicki, DR Nygren, A Obertacke, S Odrowski, A Olivas, M Olivo, A O'Murchadha, S Panknin, L Paul, JA Pepper, C Pérez de los Heros, D Pieloth, N Pirk, J Posselt, PB Price, GT Przybylski, L Rädel, K Rawlins, P Redl, E Resconi, W Rhode, M Ribordy, M Richman, B Riedel, JP Rodrigues, F Rothmaier, C Rott, T Ruhe, B Ruzybayev, D Ryckbosch, SM Saba, T Salameh, H-G Sander, M Santander, S Sarkar, K Schatto, M Scheel, F Scheriau, T Schmidt, M Schmitz, S Schoenen, S Schöneberg, L Schönherr, A Schönwald, A Schukraft, L Schulte, O Schulz, D Seckel, SH Seo, Y Sestayo, S Seunarine, MWE Smith, M Soiron, D Soldin, GM Spiczak, C Spiering, M Stamatikos, T Stanev, A Stasik, T Stezelberger, RG Stokstad, A Stößl, EA Strahler, R Ström, GW Sullivan, H Taavola, I Taboada, A Tamburro, S Ter-Antonyan, S Tilav, PA Toale, S Toscano, M Usner, D van der Drift, N van Eijndhoven, A Van Overloop, J van Santen, M Vehring, M Voge, C Walck, T Waldenmaier, M Wallraff, M Walter, R Wasserman, Ch Weaver, C Wendt, S Westerhoff, N Whitehorn, K Wiebe, CH Wiebusch, DR Williams, H Wissing, M Wolf, TR Wood, K Woschnagg, C Xu, DL Xu, XW Xu, JP Yanez, G Yodh, S Yoshida, P Zarzhitsky, J Ziemann, A Zilles, M Zoll

Abstract:

We present the first results in the search for relativistic magnetic monopoles with the IceCube detector, a subsurface neutrino telescope located in the South Polar ice cap containing a volume of 1 km$^{3}$. This analysis searches data taken on the partially completed detector during 2007 when roughly 0.2 km$^{3}$ of ice was instrumented. The lack of candidate events leads to an upper limit on the flux of relativistic magnetic monopoles of $\Phi_{\mathrm{90%C.L.}}\sim 3\e{-18}\fluxunits$ for $\beta\geq0.8$. This is a factor of 4 improvement over the previous best experimental flux limits up to a Lorentz boost $\gamma$ below $10^{7}$. This result is then interpreted for a wide range of mass and kinetic energy values.

An improved method for measuring muon energy using the truncated mean of dE/dx

ArXiv 1208.343 (2012)

Authors:

IceCube collaboration, R Abbasi, Y Abdou, M Ackermann, J Adams, JA Aguilar, M Ahlers, D Altmann, K Andeen, J Auffenberg, X Bai, M Baker, SW Barwick, V Baum, R Bay, K Beattie, JJ Beatty, S Bechet, J Becker Tjus, K-H Becker, M Bell, ML Benabderrahmane, S BenZvi, J Berdermann, P Berghaus, D Berley, E Bernardini, D Bertrand, DZ Besson, D Bindig, M Bissok, E Blaufuss, J Blumenthal, DJ Boersma, C Bohm, D Bose, S Böser, O Botner, L Brayeur, AM Brown, R Bruijn, J Brunner, S Buitink, M Carson, J Casey, M Casier, D Chirkin, B Christy, F Clevermann, S Cohen, DF Cowen, AH Cruz Silva, M Danninger, J Daughhetee, JC Davis, C De Clercq, F Descamps, P Desiati, G de Vries-Uiterweerd, T DeYoung, JC Díaz-Vélez, J Dreyer, JP Dumm, M Dunkman, R Eagan, J Eisch, C Elliott, RW Ellsworth, O Engdegård, S Euler, PA Evenson, O Fadiran, AR Fazely, A Fedynitch, J Feintzeig, T Feusels, K Filimonov, C Finley, T Fischer-Wasels, S Flis, A Franckowiak, R Franke, K Frantzen, T Fuchs, TK Gaisser, J Gallagher, L Gerhardt, L Gladstone, T Glüsenkamp, A Goldschmidt, JA Goodman, D Góra, D Grant, A Groß, S Grullon, M Gurtner, C Ha, A Haj Ismail, A Hallgren, F Halzen, K Hanson, D Heereman, P Heimann, D Heinen, K Helbing, R Hellauer, S Hickford, GC Hill, KD Hoffman, R Hoffmann, A Homeier, K Hoshina, W Huelsnitz, PO Hulth, K Hultqvist, S Hussain, A Ishihara, E Jacobi, J Jacobsen, GS Japaridze, O Jlelati, A Kappes, T Karg, A Karle, J Kiryluk, F Kislat, J Kläs, SR Klein, S Klepser, J-H Köhne, G Kohnen, H Kolanoski, L Köpke, C Kopper, S Kopper, DJ Koskinen, M Kowalski, M Krasberg, G Kroll, J Kunnen, N Kurahashi, T Kuwabara, M Labare, K Laihem, H Landsman, MJ Larson, R Lauer, M Lesiak-Bzdak, J Lünemann, J Madsen, R Maruyama, K Mase, HS Matis, A McDermott, F McNally, K Meagher, M Merck, P Mészáros, T Meures, S Miarecki, E Middell, N Milke, J Miller, L Mohrmann, T Montaruli, R Morse, SM Movit, R Nahnhauer, U Naumann, P Nießen, SC Nowicki, DR Nygren, A Obertacke, S Odrowski, A Olivas, M Olivo, A O'Murchadha, S Panknin, L Paul, JA Pepper, C Pérez de los Heros, D Pieloth, N Pirk, J Posselt, PB Price, GT Przybylski, L Rädel, K Rawlins, P Redl, E Resconi, W Rhode, M Ribordy, M Richman, B Riedel, JP Rodrigues, J Roth, F Rothmaier, C Rott, C Roucelle, T Ruhe, B Ruzybayev, D Ryckbosch, SM Saba, T Salameh, H-G Sander, M Santander, S Sarkar, K Schatto, M Scheel, F Scheriau, T Schmidt, M Schmitz, S Schoenen, S Schöneberg, L Schönherr, A Schönwald, A Schukraft, L Schulte, O Schulz, D Seckel, SH Seo, Y Sestayo, S Seunarine, L Shulman, MWE Smith, M Soiron, D Soldin, GM Spiczak, C Spiering, M Stamatikos, T Stanev, A Stasik, T Stezelberger, RG Stokstad, A Stößl, S Stoyanov, EA Strahler, R Ström, K-H Sulanke, GW Sullivan, H Taavola, I Taboada, A Tamburro, S Ter-Antonyan, S Tilav, PA Toale, S Toscano, M Usner, D van der Drift, N van Eijndhoven, A Van Overloop, J van Santen, M Vehring, M Voge, C Walck, T Waldenmaier, M Wallraff, M Walter, R Wasserman, Ch Weaver, C Wendt, S Westerhoff, N Whitehorn, K Wiebe, CH Wiebusch, DR Williams, H Wissing, M Wolf, TR Wood, K Woschnagg, C Xu, DL Xu, XW Xu, JP Yanez, G Yodh, S Yoshida, P Zarzhitsky, J Ziemann, A Zilles, M Zoll

Abstract:

The measurement of muon energy is critical for many analyses in large Cherenkov detectors, particularly those that involve separating extraterrestrial neutrinos from the atmospheric neutrino background. Muon energy has traditionally been determined by measuring the specific energy loss (dE/dx) along the muon's path and relating the dE/dx to the muon energy. Because high-energy muons (E_mu > 1 TeV) lose energy randomly, the spread in dE/dx values is quite large, leading to a typical energy resolution of 0.29 in log10(E_mu) for a muon observed over a 1 km path length in the IceCube detector. In this paper, we present an improved method that uses a truncated mean and other techniques to determine the muon energy. The muon track is divided into separate segments with individual dE/dx values. The elimination of segments with the highest dE/dx results in an overall dE/dx that is more closely correlated to the muon energy. This method results in an energy resolution of 0.22 in log10(E_mu), which gives a 26% improvement. This technique is applicable to any large water or ice detector and potentially to large scintillator or liquid argon detectors.

Lateral Distribution of Muons in IceCube Cosmic Ray Events

ArXiv 1208.2979 (2012)

Authors:

IceCube Collaboration, R Abbasi, Y Abdou, M Ackermann, J Adams, JA Aguilar, M Ahlers, D Altmann, K Andeen, J Auffenberg, X Bai, M Baker, SW Barwick, V Baum, R Bay, K Beattie, JJ Beatty, S Bechet, J Becker Tjus, K-H Becker, M Bell, ML Benabderrahmane, S BenZvi, J Berdermann, P Berghaus, D Berley, E Bernardini, D Bertrand, DZ Besson, D Bindig, M Bissok, E Blaufuss, J Blumenthal, DJ Boersma, C Bohm, D Bose, S Böser, O Botner, L Brayeur, AM Brown, R Bruijn, J Brunner, S Buitink, M Carson, J Casey, M Casier, D Chirkin, B Christy, F Clevermann, S Cohen, DF Cowen, AH Cruz Silva, M Danninger, J Daughhetee, JC Davis, C De Clercq, F Descamps, P Desiati, G de Vries-Uiterweerd, T DeYoung, JC Díaz-Vélez, J Dreyer, JP Dumm, M Dunkman, R Eagan, J Eisch, C Elliott, RW Ellsworth, O Engdegård, S Euler, PA Evenson, O Fadiran, AR Fazely, A Fedynitch, J Feintzeig, T Feusels, K Filimonov, C Finley, T Fischer-Wasels, S Flis, A Franckowiak, R Franke, K Frantzen, T Fuchs, TK Gaisser, J Gallagher, L Gerhardt, L Gladstone, T Glüsenkamp, A Goldschmidt, JA Goodman, D Góra, D Grant, A Groß, S Grullon, M Gurtner, C Ha, A Haj Ismail, A Hallgren, F Halzen, K Hanson, D Heereman, P Heimann, D Heinen, K Helbing, R Hellauer, S Hickford, GC Hill, KD Hoffman, R Hoffmann, A Homeier, K Hoshina, W Huelsnitz, PO Hulth, K Hultqvist, S Hussain, A Ishihara, E Jacobi, J Jacobsen, GS Japaridze, O Jlelati, A Kappes, T Karg, A Karle, J Kiryluk, F Kislat, J Kläs, SR Klein, S Klepser, J-H Köhne, G Kohnen, H Kolanoski, L Köpke, C Kopper, S Kopper, DJ Koskinen, M Kowalski, M Krasberg, G Kroll, J Kunnen, N Kurahashi, T Kuwabara, M Labare, K Laihem, H Landsman, MJ Larson, R Lauer, M Lesiak-Bzdak, J Lünemann, J Madsen, R Maruyama, K Mase, HS Matis, A McDermott, F McNally, K Meagher, M Merck, P Mészáros, T Meures, S Miarecki, E Middell, N Milke, J Miller, L Mohrmann, T Montaruli, R Morse, SM Movit, R Nahnhauer, U Naumann, P Nießen, SC Nowicki, DR Nygren, A Obertacke, S Odrowski, A Olivas, M Olivo, A O'Murchadha, S Panknin, L Paul, JA Pepper, C Pérez de los Heros, D Pieloth, N Pirk, J Posselt, PB Price, GT Przybylski, L Rädel, K Rawlins, P Redl, E Resconi, W Rhode, M Ribordy, M Richman, B Riedel, JP Rodrigues, J Roth, F Rothmaier, C Rott, C Roucelle, T Ruhe, B Ruzybayev, D Ryckbosch, SM Saba, T Salameh, H-G Sander, M Santander, S Sarkar, K Schatto, M Scheel, F Scheriau, T Schmidt, M Schmitz, S Schoenen, S Schöneberg, L Schönherr, A Schönwald, A Schukraft, L Schulte, O Schulz, D Seckel, SH Seo, Y Sestayo, S Seunarine, L Shulman, MWE Smith, M Soiron, D Soldin, GM Spiczak, C Spiering, M Stamatikos, T Stanev, A Stasik, T Stezelberger, RG Stokstad, A Stößl, S Stoyanov, EA Strahler, R Ström, K-H Sulanke, GW Sullivan, H Taavola, I Taboada, A Tamburro, S Ter-Antonyan, S Tilav, PA Toale, S Toscano, M Usner, D van der Drift, N van Eijndhoven, A Van Overloop, J van Santen, M Vehring, M Voge, C Walck, T Waldenmaier, M Wallraff, M Walter, R Wasserman, Ch Weaver, C Wendt, S Westerhoff, N Whitehorn, K Wiebe, CH Wiebusch, DR Williams, H Wissing, M Wolf, TR Wood, K Woschnagg, C Xu, DL Xu, XW Xu, JP Yanez, G Yodh, S Yoshida, P Zarzhitsky, J Ziemann, A Zilles, M Zoll

Abstract:

In cosmic ray air showers, the muon lateral separation from the center of the shower is a measure of the transverse momentum that the muon parent acquired in the cosmic ray interaction. IceCube has observed cosmic ray interactions that produce muons laterally separated by up to 400 m from the shower core, a factor of 6 larger distance than previous measurements. These muons originate in high pT (> 2 GeV/c) interactions from the incident cosmic ray, or high-energy secondary interactions. The separation distribution shows a transition to a power law at large values, indicating the presence of a hard pT component that can be described by perturbative quantum chromodynamics. However, the rates and the zenith angle distributions of these events are not well reproduced with the cosmic ray models tested here, even those that include charm interactions. This discrepancy may be explained by a larger fraction of kaons and charmed particles than is currently incorporated in the simulations.

Measurement of the proton-air cross section at √s=57TeV with the Pierre Auger observatory

Physical Review Letters 109:6 (2012)

Authors:

P Abreu, M Aglietta, EJ Ahn, IFM Albuquerque, D Allard, I Allekotte, J Allen, P Allison, A Almeda, J Alvarez Castillo, J Alvarez-Muñiz, M Ambrosio, A Aminaei, L Anchordoqui, S Andringa, T Antičić, C Aramo, E Arganda, F Arqueros, H Asorey, P Assis, J Aublin, M Ave, M Avenier, G Avila, T Bäcker, M Balzer, KB Barber, AF Barbosa, R Bardenet, SLC Barroso, B Baughman, J Bäuml, JJ Beatty, BR Becker, KH Becker, A Bellétoile, JA Bellido, S Benzvi, C Berat, X Bertou, PL Biermann, P Billoir, F Blanco, M Blanco, C Bleve, H Blümer, M Boháčová, D Boncioli, C Bonifazi, R Bonino, N Borodai, J Brack, P Brogueira, WC Brown, R Bruijn, P Buchholz, A Bueno, RE Burton, KS Caballero-Mora, L Caramete, R Caruso, A Castellina, O Catalano, G Cataldi, L Cazon, R Cester, J Chauvin, SH Cheng, A Chiavassa, JA Chinellato, J Chirinos Diaz, J Chudoba, RW Clay, MR Coluccia, R Conceição, F Contreras, H Cook, MJ Cooper, J Coppens, A Cordier, S Coutu, CE Covault, A Creusot, A Criss, J Cronin, A Curutiu, S Dagoret-Campagne, R Dallier, S Dasso, K Daumiller, BR Dawson, RM De Almeida, M De Domenico, C De Donato, SJ De Jong, G De La Vega, WJM De Mello Junior, JRT De Mello Neto, I De Mitri

Abstract:

We report a measurement of the proton-air cross section for particle production at the center-of-mass energy per nucleon of 57 TeV. This is derived from the distribution of the depths of shower maxima observed with the Pierre Auger Observatory: systematic uncertainties are studied in detail. Analyzing the tail of the distribution of the shower maxima, a proton-air cross section of [505±22(stat)-36+28(syst)]mb is found. © 2012 American Physical Society.

Search for point-like sources of ultra-high energy neutrinos at the Pierre Auger Observatory and improved limit on the diffuse flux of tau neutrinos

Astrophysical Journal Letters 755:1 (2012)

Authors:

P Abreu, M Aglietta, M Ahlers, EJ Ahn, IFM Albuquerque, D Allard, I Allekotte, J Allen, P Allison, A Almela, J Alvarez Castillo, J Alvarez-Mũiz, R Alves Batista, M Ambrosio, A Aminaei, L Anchordoqui, S Andringa, T Antii'C, C Aramo, E Arganda, F Arqueros, H Asorey, P Assis, J Aublin, M Ave, M Avenier, G Avila, AM Badescu, M Balzer, KB Barber, AF Barbosa, R Bardenet, SLC Barroso, B Baughman, J Bäuml, C Baus, JJ Beatty, KH Becker, A Bellétoile, JA Bellido, S Benzvi, C Berat, X Bertou, PL Biermann, P Billoir, O Blanch-Bigas, F Blanco, M Blanco, C Bleve, H Blümer, M Bohov, D Boncioli, C Bonifazi, R Bonino, N Borodai, J Brack, I Brancus, P Brogueira, WC Brown, R Bruijn, P Buchholz, A Bueno, L Buroker, RE Burton, KS Caballero-Mora, B Caccianiga, L Caramete, R Caruso, A Castellina, O Catalano, G Cataldi, L Cazon, R Cester, J Chauvin, SH Cheng, A Chiavassa, JA Chinellato, J Chirinos Diaz, J Chudoba, M Cilmo, RW Clay, G Cocciolo, L Collica, MR Coluccia, R Conceiço, F Contreras, H Cook, MJ Cooper, J Coppens, A Cordier, S Coutu, CE Covault, A Creusot, A Criss, J Cronin, A Curutiu, S Dagoret-Campagne, R Dallier, B Daniel, S Dasso

Abstract:

The surface detector array of the Pierre Auger Observatory can detect neutrinos with energy E ν between 1017 eV and 10 20 eV from point-like sources across the sky south of +55° and north of -65° declinations. A search has been performed for highly inclined extensive air showers produced by the interaction of neutrinos of all flavors in the atmosphere (downward-going neutrinos), and by the decay of tau leptons originating from tau neutrino interactions in Earth's crust (Earth-skimming neutrinos). No candidate neutrinos have been found in data up to 2010 May 31. This corresponds to an equivalent exposure of ∼3.5years of a full surface detector array for the Earth-skimming channel and ∼2 years for the downward-going channel. An improved upper limit on the diffuse flux of tau neutrinos has been derived. Upper limits on the neutrino flux from point-like sources have been derived as a function of the source declination. Assuming a differential neutrino flux k PS E -2ν from a point-like source, 90% confidence level upper limits for k PS at the level of ≈5 × 10-7 and 2.5 × 10-6 GeV cm-2 s-1 have been obtained over a broad range of declinations from the searches for Earth-skimming and downward-going neutrinos, respectively. © 2012 The American Astronomical Society. All rights reserved.