Search for dark matter produced in association with a Standard Model Higgs boson decaying into $b$-quarks using the full Run 2 dataset from the ATLAS detector

ArXiv 2108.13391 (2021)

Measurement of $b$-quark fragmentation properties in jets using the decay $B^{\pm} \to J/ψK^{\pm}$ in $pp$ collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector

ArXiv 2108.1165 (2021)

The SNO+ experiment

Journal of Instrumentation IOP Publishing 16:8 (2021) P08059

Authors:

V Albanese, R Alves, Mr Anderson, S Andringa, L Anselmo, E Arushanova, S Asahi, M Askins, Dj Auty, Ar Back, S Back, F Bar o, Z Barnard, A Barr, N Barros, D Bartlett, R Bayes, C Beaudoin, Ew Beier, G Berardi, A Bialek, Sd Biller, E Blucher, R Bonventre, M Boulay, D Braid, E Caden, Ej Callaghan, J Caravaca, J Carvalho, L Cavalli, D Chauhan, M Chen, O Chkvorets, Kj Clark, B Cleveland, C Connors, D Cookman, It Coulter, Ma Cox, D Cressy, X Dai, C Darrach, B Davis-Purcell, C Deluce, Mm Depatie, F Descamps, Armin Reichold

Abstract:

The SNO+ experiment is located 2 km underground at SNOLAB in Sudbury, Canada. A low background search for neutrinoless double beta (0νββ) decay will be conducted using 780 tonnes of liquid scintillator loaded with 3.9 tonnes of natural tellurium, corresponding to 1.3 tonnes of 130Te. This paper provides a general overview of the SNO+ experiment, including detector design, construction of process plants, commissioning efforts, electronics upgrades, data acquisition systems, and calibration techniques. The SNO+ collaboration is reusing the acrylic vessel, PMT array, and electronics of the SNO detector, having made a number of experimental upgrades and essential adaptations for use with the liquid scintillator. With low backgrounds and a low energy threshold, the SNO+ collaboration will also pursue a rich physics program beyond the search for 0νββ decay, including studies of geo- and reactor antineutrinos, supernova and solar neutrinos, and exotic physics such as the search for invisible nucleon decay. The SNO+ approach to the search for 0νββ decay is scalable: a future phase with high 130Te-loading is envisioned to probe an effective Majorana mass in the inverted mass ordering region.

Measurement of the energy response of the ATLAS calorimeter to charged pions from $W^{\pm}\rightarrowτ^{\pm}(\rightarrowπ^{\pm}ν_τ)ν_τ$ events in Run 2 data

ArXiv 2108.09043 (2021)

Search for heavy particles in the $b$-tagged dijet mass distribution with additional $b$-tagged jets in proton-proton collisions at $\sqrt{s} = 13$ TeV with the ATLAS experiment

ArXiv 2108.09059 (2021)