Identification of boosted Higgs bosons decaying into $b$-quark pairs with the ATLAS detector at 13 TeV

ArXiv 1906.11005 (2019)

Directions in plasma wakefield acceleration

Philosophical Transactions A: Mathematical, Physical and Engineering Sciences Royal Society 377:2151 (2019) 20190215

Authors:

B Hidding, Brian Foster, MJ Hogan, P Muggli, JB Rosenzweig

Abstract:

This introductory article is a synopsis of the status and prospects of particle-beam-driven plasma wakefield acceleration (PWFA). Conceptual and experimental breakthroughs obtained over the last years have initiated a rapid growth of the research field, and increased maturity of underlying technology allows an increasing number of research groups to engage in experimental R&D.; We briefly describe the fundamental mechanisms of PWFA, from which its chief attractions arise. Most importantly, this is the capability of extremely rapid acceleration of electrons and positrons at gradients many orders of magnitude larger than in conventional accelerators. This allows the size of accelerator units to be shrunk from the kilometre to metre scale, and possibly the quality of accelerated electron beam output to be improved by orders of magnitude. In turn, such compact and high-quality accelerators are potentially transformative for applications across natural, material and life sciences.

FLASHForward: plasma wakefield accelerator science for high-average-power applications.

Philosophical Transactions of the Royal Society A Royal Society 377:2151 (2019) Article:20180392

Authors:

R D'Arcy, A Aschikhin, S Bohlen, G Boyle, T Brümmer, J Chappell, S Diederichs, Brian Foster, MJ Garland, L Goldberg, P Gonzalez, S Karstensen, A Knetsch, P Kuang, V Libov, K Ludwig, A Martinez De La Ossa, F Marutzky, M Meisel, TJ Mehrling, P Niknejadi, K Põder, P Pourmoussavi, M Quast, J-H Röckemann, L Schaper, B Schmidt, S Schröder, J-P Schwinkendorf, B Sheeran, G Tauscher, S Wesch, M Wing, P Winkler, M Zeng, J Osterhoff

Abstract:

The FLASHForward experimental facility is a high-performance test-bed for precision plasma wakefield research, aiming to accelerate high-quality electron beams to GeV-levels in a few centimetres of ionized gas. The plasma is created by ionizing gas in a gas cell either by a high-voltage discharge or a high-intensity laser pulse. The electrons to be accelerated will either be injected internally from the plasma background or externally from the FLASH superconducting RF front end. In both cases, the wakefield will be driven by electron beams provided by the FLASH gun and linac modules operating with a 10 Hz macro-pulse structure, generating 1.25 GeV, 1 nC electron bunches at up to 3 MHz micro-pulse repetition rates. At full capacity, this FLASH bunch-train structure corresponds to 30 kW of average power, orders of magnitude higher than drivers available to other state-of-the-art LWFA and PWFA experiments. This high-power functionality means FLASHForward is the only plasma wakefield facility in the world with the immediate capability to develop, explore and benchmark high-average-power plasma wakefield research essential for next-generation facilities. The operational parameters and technical highlights of the experiment are discussed, as well as the scientific goals and high-average-power outlook.

Properties of jet fragmentation using charged particles measured with the ATLAS detector in $pp$ collisions at $\sqrt{s}=13$ TeV

ArXiv 1906.09254 (2019)

Search for diboson resonances in hadronic final states in 139 fb$^{-1}$ of $pp$ collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector

ArXiv 1906.08589 (2019)