A New Technique to Load 130Te in Liquid Scintillator for Neutrinoless Double Beta Decay Experiments

XXVII INTERNATIONAL CONFERENCE ON NEUTRINO PHYSICS AND ASTROPHYSICS (NEUTRINO2016) 888 (2017) ARTN 012084

Authors:

Steven Biller, Szymon Manecki

Current status and future prospects of the SNO+ experiment

Advances in High Energy Physics Hindawi Publishing Corporation 2016 (2016) 6194250-6194250

Authors:

Steven D Biller, Luca A Cavalli, Jack T Dunger, Nicholas A Jelley, Christopher Jones, Peter G Jones, Jeffrey Lidgard, Krishana Majumdar, Armin Reichold, Laura Segui, Jeffrey C-L Tseng

Abstract:

SNO+ is a large liquid scintillator-based experiment located 2km underground at SNOLAB, Sudbury, Canada. It reuses the Sudbury Neutrino Observatory detector, consisting of a 12m diameter acrylic vessel which will be filled with about 780 tonnes of ultra-pure liquid scintillator. Designed as a multipurpose neutrino experiment, the primary goal of SNO+ is a search for the neutrinoless double-beta decay (0$\nu\beta\beta$) of 130Te. In Phase I, the detector will be loaded with 0.3% natural tellurium, corresponding to nearly 800 kg of 130Te, with an expected effective Majorana neutrino mass sensitivity in the region of 55-133 meV, just above the inverted mass hierarchy. Recently, the possibility of deploying up to ten times more natural tellurium has been investigated, which would enable SNO+ to achieve sensitivity deep into the parameter space for the inverted neutrino mass hierarchy in the future. Additionally, SNO+ aims to measure reactor antineutrino oscillations, low-energy solar neutrinos, and geoneutrinos, to be sensitive to supernova neutrinos, and to search for exotic physics. A first phase with the detector filled with water will begin soon, with the scintillator phase expected to start after a few months of water data taking. The 0$\nu\beta\beta$ Phase I is foreseen for 2017.

Position reconstruction in the DEAP-3600 dark matter search experiment

Journal of Instrumentation 20:07 (2025)

Authors:

P Adhikari, R Ajaj, M Alpízar-Venegas, P-A Amaudruz, J Anstey, GR Araujo, DJ Auty, M Baldwin, M Batygov, B Beltran, H Benmansour, MA Bigentini, CE Bina, J Bonatt, WM Bonivento, MG Boulay, B Broerman, JF Bueno, PM Burghardt, A Butcher, M Cadeddu, B Cai, M Cárdenas-Montes, S Cavuoti, M Chen, Y Chen, S Choudhary, BT Cleveland, JM Corning, R Crampton, D Cranshaw, S Daugherty, P DelGobbo, K Dering, P Di Stefano, J DiGioseffo, G Dolganov, L Doria, FA Duncan, M Dunford, E Ellingwood, A Erlandson, SS Farahani, N Fatemighomi, G Fiorillo, S Florian, A Flower, RJ Ford, R Gagnon, D Gahan, D Gallacher, A Garai, P García Abia, S Garg, P Giampa, A Giménez-Alcázar, D Goeldi, VV Golovko, P Gorel, K Graham, DR Grant, A Grobov, AL Hallin, M Hamstra, PJ Harvey, S Haskins, C Hearns, J Hu, J Hucker, T Hugues, A Ilyasov, B Jigmeddorj, CJ Jillings, A Joy, O Kamaev, G Kaur, A Kemp, M Khoshraftar Yazdi, M Kuźniak, F La Zia, M Lai, S Langrock, B Lehnert, A Leonhardt, J LePage-Bourbonnais, N Levashko, J Lidgard, T Lindner, M Lissia, J Lock, L Luzzi, I Machulin, P Majewski, A Maru, J Mason, AB McDonald, T McElroy, T McGinn, JB McLaughlin, R Mehdiyev, C Mielnichuk, L Mirasola, A Moharana, J Monroe, A Murray, P Nadeau, C Nantais, C Ng, AJ Noble, E O'Dwyer, G Oliviéro, M Olszewski, C Ouellet, S Pal, D Papi, B Park, P Pasuthip, SJM Peeters, M Perry, V Pesudo, E Picciau, M-C Piro, TR Pollmann, F Rad, ET Rand, C Rethmeier, F Retière, I Rodríguez García, L Roszkowski, JB Ruhland, R Santorelli, FG Schuckman, N Seeburn, S Seth, V Shalamova, K Singhrao, P Skensved, T Smirnova, NJT Smith, B Smith, K Sobotkiewich, T Sonley, J Sosiak, J Soukup, R Stainforth, G Stanic, C Stone, V Strickland, M Stringer, B Sur, J Tang, R Turcotte-Tardif, E Vázquez-Jáuregui, L Veloce, S Viel, B Vyas, M Walczak, J Walding, M Waqar, M Ward, S Westerdale, J Willis, R Wormington, A Zuñiga-Reyes, The DEAP collaboration

Abstract:

In the DEAP-3600 dark matter search experiment, precise reconstruction of the positions of scattering events in liquid argon is key for background rejection and defining a fiducial volume that enhances dark matter candidate events identification. This paper describes three distinct position reconstruction algorithms employed by DEAP-3600, leveraging the spatial and temporal information provided by photomultipliers surrounding a spherical liquid argon vessel. Two of these methods are maximum-likelihood algorithms: the first uses the spatial distribution of detected photoelectrons, while the second incorporates timing information from the detected scintillation light. Additionally, a machine learning approach based on the pattern of photoelectron counts across the photomultipliers is explored.

Initial measurement of reactor antineutrino oscillation at SNO+

European Physical Journal C Springer Nature 85:1 (2025) 17

Authors:

A Allega, MR Anderson, S Andringa, M Askins, DJ Auty, A Bacon, J Baker, F Barão, N Barros, R Bayes, EW Beier, TS Bezerra, A Bialek, SD Biller, E Blucher, E Caden, EJ Callaghan, M Chen, S Cheng, B Cleveland, D Cookman, J Corning, MA Cox, R Dehghani, J Deloye, MM Depatie, F Di Lodovico, C Dima, J Dittmer, KH Dixon, MS Esmaeilian, E Falk, N Fatemighomi, R Ford, A Gaur, OI González-Reina, D Gooding, C Grant, J Grove, S Hall, AL Hallin, D Hallman, WJ Heintzelman, RL Helmer, C Hewitt, V Howard, B Hreljac, J Hu, P Huang, R Hunt-Stokes, SMA Hussain, AS Inácio, CJ Jillings, S Kaluzienski, T Kaptanoglu, H Khan, J Kladnik, JR Klein, LL Kormos, B Krar, C Kraus, CB Krauss, T Kroupová, C Lake, L Lebanowski, C Lefebvre, V Lozza, M Luo, A Maio, S Manecki, J Maneira, RD Martin, N McCauley, AB McDonald, C Mills, G Milton, A Molina Colina, D Morris, I Morton-Blake, M Mubasher, S Naugle, LJ Nolan, HM O’Keeffe, GD Orebi Gann, J Page, K Paleshi, W Parker, J Paton, SJM Peeters, L Pickard, B Quenallata, P Ravi, A Reichold, S Riccetto, J Rose, R Rosero, I Semenec, J Simms, P Skensved, M Smiley, J Smith, R Svoboda, B Tam, J Tseng, E Vázquez-Jáuregui, JGC Veinot, CJ Virtue, M Ward, JJ Weigand, JR Wilson, JD Wilson, A Wright, S Yang, M Yeh, Z Ye, S Yu, Y Zhang, K Zuber, A Zummo

Measurement of the B8 solar neutrino flux using the full SNO+ water phase dataset

Physical Review D American Physical Society (APS) 110:12 (2024) 122003

Authors:

A Allega, MR Anderson, S Andringa, M Askins, DM Asner, DJ Auty, A Bacon, F Barão, N Barros, R Bayes, EW Beier, A Bialek, SD Biller, E Blucher, E Caden, EJ Callaghan, M Chen, S Cheng, B Cleveland, D Cookman, J Corning, MA Cox, R Dehghani, J Deloye, MM Depatie, F Di Lodovico, C Dima, J Dittmer, KH Dixon, MS Esmaeilian, E Falk, N Fatemighomi, R Ford, A Gaur, OI González-Reina, D Gooding, C Grant, J Grove, S Hall, AL Hallin, D Hallman, WJ Heintzelman, RL Helmer, C Hewitt, B Hreljac, J Hu, P Huang, R Hunt-Stokes, SMA Hussain, AS Inácio, CJ Jillings, S Kaluzienski, T Kaptanoglu, J Kladnik, JR Klein, LL Kormos, B Krar, C Kraus, CB Krauss, T Kroupová, C Lake, L Lebanowski, C Lefebvre, V Lozza, M Luo, A Maio, S Manecki, J Maneira, RD Martin, N McCauley, AB McDonald, G Milton, D Morris, M Mubasher, S Naugle, LJ Nolan, HM O’Keeffe, GD Orebi Gann, J Page, K Paleshi, W Parker, J Paton, SJM Peeters, L Pickard, B Quenallata, P Ravi, A Reichold, S Riccetto, J Rose, R Rosero, I Semenec, J Simms, P Skensved, M Smiley, R Svoboda, B Tam, J Tseng, E Vázquez-Jáuregui, CJ Virtue, M Ward, JR Wilson, JD Wilson, A Wright, S Yang, M Yeh, Z Ye, S Yu, Y Zhang, K Zuber, A Zummo