A New Technique to Load 130Te in Liquid Scintillator for Neutrinoless Double Beta Decay Experiments
XXVII INTERNATIONAL CONFERENCE ON NEUTRINO PHYSICS AND ASTROPHYSICS (NEUTRINO2016) 888 (2017) ARTN 012084
Current status and future prospects of the SNO+ experiment
Advances in High Energy Physics Hindawi Publishing Corporation 2016 (2016) 6194250-6194250
Abstract:
SNO+ is a large liquid scintillator-based experiment located 2km underground at SNOLAB, Sudbury, Canada. It reuses the Sudbury Neutrino Observatory detector, consisting of a 12m diameter acrylic vessel which will be filled with about 780 tonnes of ultra-pure liquid scintillator. Designed as a multipurpose neutrino experiment, the primary goal of SNO+ is a search for the neutrinoless double-beta decay (0$\nu\beta\beta$) of 130Te. In Phase I, the detector will be loaded with 0.3% natural tellurium, corresponding to nearly 800 kg of 130Te, with an expected effective Majorana neutrino mass sensitivity in the region of 55-133 meV, just above the inverted mass hierarchy. Recently, the possibility of deploying up to ten times more natural tellurium has been investigated, which would enable SNO+ to achieve sensitivity deep into the parameter space for the inverted neutrino mass hierarchy in the future. Additionally, SNO+ aims to measure reactor antineutrino oscillations, low-energy solar neutrinos, and geoneutrinos, to be sensitive to supernova neutrinos, and to search for exotic physics. A first phase with the detector filled with water will begin soon, with the scintillator phase expected to start after a few months of water data taking. The 0$\nu\beta\beta$ Phase I is foreseen for 2017.Position reconstruction in the DEAP-3600 dark matter search experiment
Journal of Instrumentation 20:07 (2025)
Abstract:
In the DEAP-3600 dark matter search experiment, precise reconstruction of the positions of scattering events in liquid argon is key for background rejection and defining a fiducial volume that enhances dark matter candidate events identification. This paper describes three distinct position reconstruction algorithms employed by DEAP-3600, leveraging the spatial and temporal information provided by photomultipliers surrounding a spherical liquid argon vessel. Two of these methods are maximum-likelihood algorithms: the first uses the spatial distribution of detected photoelectrons, while the second incorporates timing information from the detected scintillation light. Additionally, a machine learning approach based on the pattern of photoelectron counts across the photomultipliers is explored.Initial measurement of reactor antineutrino oscillation at SNO+
European Physical Journal C Springer Nature 85:1 (2025) 17
Measurement of the B8 solar neutrino flux using the full SNO+ water phase dataset
Physical Review D American Physical Society (APS) 110:12 (2024) 122003