Search for non-resonant Higgs boson pair production in the bbl nu l nu final state with the ATLAS detector in pp collisions at root s=13 TeV
Physics Letters B Elsevier 801 (2019) 135145
Abstract:
A search for non-resonant Higgs boson pair production, as predicted by the Standard Model, is presented, where one of the Higgs bosons decays via the H→bb channel and the other via one of the H→WW⁎/ZZ⁎/ττ channels. The analysis selection requires events to have at least two b-tagged jets and exactly two leptons (electrons or muons) with opposite electric charge in the final state. Candidate events consistent with Higgs boson pair production are selected using a multi-class neural network discriminant. The analysis uses 139 fb−1 of pp collision data recorded at a centre-of-mass energy of 13 TeV by the ATLAS detector at the Large Hadron Collider. An observed (expected) upper limit of 1.2 (0.9−0.3+0.4) pb is set on the non-resonant Higgs boson pair production cross-section at 95% confidence level, which is equivalent to 40 (29−9+14) times the value predicted in the Standard Model.Cosmogenic neutron production at the Sudbury Neutrino Observatory
PHYSICAL REVIEW D 100:11 (2019) ARTN 112005
Abstract:
© 2019 authors. Published by the American Physical Society. Published by the American Physical Society under the terms of the "https://creativecommons.org/licenses/by/4.0/" Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI. Neutrons produced in nuclear interactions initiated by cosmic-ray muons present an irreducible background to many rare-event searches, even in detectors located deep underground. Models for the production of these neutrons have been tested against previous experimental data, but the extrapolation to deeper sites is not well understood. Here we report results from an analysis of cosmogenically produced neutrons at the Sudbury Neutrino Observatory. A specific set of observables are presented, which can be used to benchmark the validity of geant4 physics models. In addition, the cosmogenic neutron yield, in units of 10-4 cm2/(g·μ), is measured to be 7.28±0.09(stat)-1.12+1.59(syst) in pure heavy water and 7.30±0.07(stat)-1.02+1.40(syst) in NaCl-loaded heavy water. These results provide unique insights into this potential background source for experiments at SNOLAB.Search for the Higgs boson decays H → ee and H → eμ in pp collisions at with the ATLAS detector
Physics Letters B Elsevier 801 (2019) 135148
Abstract:
Searches for the Higgs boson decays H→ee and H→eμ are performed using data corresponding to an integrated luminosity of 139fb−1 collected with the ATLAS detector in pp collisions at s=13 TeV at the LHC. No significant signals are observed, in agreement with the Standard Model expectation. For a Higgs boson mass of 125 GeV, the observed (expected) upper limit at the 95% confidence level on the branching fraction B(H→ee) is 3.6×10−4 (3.5×10−4) and on B(H→eμ) is 6.2×10−5 (5.9×10−5). These results represent improvements by factors of about five and six on the previous best limits on B(H→ee) and B(H→eμ) respectively.Search for displaced vertices of oppositely charged leptons from decays of long-lived particles in pp collisions at root s=13 TeV with the ATLAS detector
Physics Letters B Elsevier 801 (2019) 135114
Abstract:
A search for long-lived particles decaying into an oppositely charged lepton pair, μμ, ee, or eμ, is presented using 32.8fb−1 of pp collision data collected at s=13 TeV by the ATLAS detector at the LHC. Candidate leptons are required to form a vertex, within the inner tracking volume of ATLAS, displaced from the primary pp interaction region. No lepton pairs with an invariant mass greater than 12 GeV are observed, consistent with the background expectations derived from data. The detection efficiencies for generic resonances with lifetimes (cτ) of 100–1000 mm decaying into a dilepton pair with masses between 0.1–1.0 TeV are presented as a function of pT and decay radius of the resonances to allow the extraction of upper limits on the cross sections for theoretical models. The result is also interpreted in a supersymmetric model in which the lightest neutralino, produced via squark–antisquark production, decays into ℓ+ℓ′−ν (ℓ,ℓ′=e, μ) with a finite lifetime due to the presence of R-parity violating couplings. Cross-section limits are presented for specific squark and neutralino masses. For a 700 GeV squark, neutralinos with masses of 50–500 GeV and mean proper lifetimes corresponding to cτ values between 1 mm to 6 m are excluded. For a 1.6 TeV squark, cτ values between 3 mm to 1 m are excluded for 1.3 TeV neutralinos.ATLAS b-jet identification performance and efficiency measurement with tt¯ events in pp collisions at s√=13 TeV
European Physical Journal C: Particles and Fields Springer 79:11 (2019) 970