Surface acoustic wave devices on bulk ZnO crystals at low temperature
Applied Physics Letters AIP Publishing 106:6 (2015) 063509-063509
Abstract:
Surface acoustic wave (SAW) devices based on thin films of ZnO are a well established technology. However, SAW devices on bulk ZnO crystals are not practical at room temperature due to the significant damping caused by finite electrical conductivity of the crystal. Here, by operating at low temperatures, we demonstrate effective SAW devices on the (0001) surface of bulk ZnO crystals, including a delay line operating at SAW wavelengths of λ = 4 and 6 μm and a one-port resonator at a wavelength of λ = 1.6 μm. We find that the SAW velocity is temperature dependent, reaching v ≈ 2.68 km/s at 10 mK. Our resonator reaches a maximum quality factor of Qi ≈ 1.5 × 105, demonstrating that bulk ZnO is highly viable for low temperature SAW applications. The performance of the devices is strongly correlated with the bulk conductivity, which quenches SAW transmission above 200 K.Coherence and decay of higher energy levels of a superconducting transmon qubit
Physical Review Letters American Physical Society 114:1 (2015) 010501
Abstract:
We present measurements of coherence and successive decay dynamics of higher energy levels of a superconducting transmon qubit. By applying consecutive π pulses for each sequential transition frequency, we excite the qubit from the ground state up to its fourth excited level and characterize the decay and coherence of each state. We find the decay to proceed mainly sequentially, with relaxation times in excess of 20 μs for all transitions. We also provide a direct measurement of the charge dispersion of these levels by analyzing beating patterns in Ramsey fringes. The results demonstrate the feasibility of using higher levels in transmon qubits for encoding quantum information.Coherence and Decay of Higher Energy Levels of a Superconducting Transmon Qubit
(2014)
Quantum dot admittance probed at microwave frequencies with an on-chip resonator
Physical Review B - Condensed Matter and Materials Physics 86:11 (2012)