Using Sideband Transitions for Two-Qubit Operations in Superconducting Circuits

(2008)

Authors:

PJ Leek, S Filipp, P Maurer, M Baur, R Bianchetti, JM Fink, M Göppl, L Steffen, A Wallraff

Using Sideband Transitions for Two-Qubit Operations in Superconducting Circuits

ArXiv 0812.2678 (2008)

Authors:

PJ Leek, S Filipp, P Maurer, M Baur, R Bianchetti, JM Fink, M Göppl, L Steffen, A Wallraff

Abstract:

We demonstrate time resolved driving of two-photon blue sideband transitions between superconducting qubits and a transmission line resonator. Using the sidebands, we implement a pulse sequence that first entangles one qubit with the resonator, and subsequently distributes the entanglement between two qubits. We show generation of 75% fidelity Bell states by this method. The full density matrix of the two qubit system is extracted using joint measurement and quantum state tomography, and shows close agreement with numerical simulation. The scheme is potentially extendable to a scalable universal gate for quantum computation.

Coplanar Waveguide Resonators for Circuit Quantum Electrodynamics

(2008)

Authors:

M Göppl, A Fragner, M Baur, R Bianchetti, S Filipp, JM Fink, PJ Leek, G Puebla, L Steffen, A Wallraff

Coplanar Waveguide Resonators for Circuit Quantum Electrodynamics

ArXiv 0807.4094 (2008)

Authors:

M Göppl, A Fragner, M Baur, R Bianchetti, S Filipp, JM Fink, PJ Leek, G Puebla, L Steffen, A Wallraff

Abstract:

We have designed and fabricated superconducting coplanar waveguide resonators with fundamental frequencies from 2 to $9 \rm{GHz}$ and loaded quality factors ranging from a few hundreds to a several hundred thousands reached at temperatures of $20 \rm{mK}$. The loaded quality factors are controlled by appropriately designed input and output coupling capacitors. The measured transmission spectra are analyzed using both a lumped element model and a distributed element transmission matrix method. The experimentally determined resonance frequencies, quality factors and insertion losses are fully and consistently characterized by the two models for all measured devices. Such resonators find prominent applications in quantum optics and quantum information processing with superconducting electronic circuits and in single photon detectors and parametric amplifiers.

Charge pumping in carbon nanotube quantum dots

(2008)

Authors:

MR Buitelaar, V Kashcheyevs, PJ Leek, VI Talyanskii, CG Smith, D Anderson, GAC Jones, J Wei, DH Cobden