In the fourth year, MPhys students will study two major options, and also undertake a substantial project.

Project

Each student works individually on a research problem (either theoretical or experimental), under the supervision of a senior physicist. Topics range over all areas of research in the Department of Physics, and the work is completed by writing a detailed report. The project may produce a result of sufficient importance to justify its publication in a scientific journal. Projects give students valuable experience of open-ended work, solving real problems.

Major options

Astrophysics is concerned with the application of the laws of physics to phenomena throughout the observable Universe. Some of these phenomena present conditions so extreme as to challenge current physical knowledge. The course combines a study of important basic astrophysics with an introduction to topics in the forefront of current research.

Biological physics is the study of the physical process of life. This rapidly growing interdisciplinary field, with links to biochemistry, bioinformatics, medicine and nanotechnology. The course will cover the biological structures and physical mechanisms responsible for fundamental biological processes such as motion, energy generation, information storage, signal transmission and molecular transport. Since much of the knowledge in these areas is due to recent experimental advances, the course will also describe modern techniques for the study of biological molecules and machines at the single-molecule level.

Condensed matter physics is concerned with the study of the fundamental properties of solids at a microscopic level. The interactions between atoms at very high densities give rise to a wealth of new phenomena from high-temperature superconductivity to low-dimensional electron behaviour in semiconductor nanostructures. Many have led to the development of novel technological applications.

Laser science and quantum information processing: the fundamental physics of atoms and molecules underlies research into the quantum nature of matter and radiation as well as much of modern technology. The course covers atomic and molecular structure, physics and applications of lasers and modern optics.

Particle physics considers the nature of matter and forces at the most fundamental level is studied. The subject deals with electrons and neutrinos, and the quarks that make up the proton and neutron, as well as the heavier versions of these four basic particles. The course discusses our theoretical understanding of the way these particles interact through the strong and electroweak interactions and includes recent exciting discoveries, such as the very massive top quark and neutrino masses. It ends with a perspective on future possibilities, particularly the ongoing search for the elusive Higgs boson.

Physics of atmospheres and oceans: the course shows how physics helps us understand and interpret a wide range of atmospheric and oceanic phenomena. It starts with simple applications of thermodynamics and fluid dynamics to atmospheric behaviour. The greenhouse effect, atmospheric ozone depletion and details of modern space instruments are presented. The current understanding of climate and climate variability is explored.

Theoretical physics: modern physics has revealed how fundamental laws are often encoded in beautiful mathematical structures. This course provides an introduction to three areas where this can be explored: classical field theory, including Einstein’s theory of gravitation; advanced quantum mechanics, including Dirac’s relativistic wave equation for the electron; and statistical physics, including the theory of phase transitions.

Fourth year exams (part C)

Two written papers on major options and a project report. The MPhys honours degree classification is made on the combined results from the parts A, B & C exams.