Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Juno Jupiter image

Muhammad Adnan Abid

Postdoctoral Research Assistant

Research theme

  • Climate physics

Sub department

  • Atmospheric, Oceanic and Planetary Physics

Research groups

  • Predictability of weather and climate
adnan.abid@physics.ox.ac.uk
Robert Hooke Building, room S38
ORCID
Google Scholar
  • About
  • Publications

SPEEDY-NEMO: performance and applications of a fully-coupled intermediate-complexity climate model

Climate Dynamics Springer 62:5 (2024) 3763-3781

Authors:

Paolo Ruggieri, Muhammad Adnan Abid, Javier García-Serrano, Carlo Grancini, Fred Kucharski, Salvatore Pascale, Danila Volpi

Abstract:

A fully-coupled general circulation model of intermediate complexity is documented. The study presents an overview of the model climatology and variability, with particular attention to the phenomenology of processes that are relevant for the predictability of the climate system on seasonal-to-decadal time-scales. It is shown that the model can realistically simulate the general circulation of the atmosphere and the ocean, as well as the major modes of climate variability on the examined time-scales: e.g. El Niño-Southern Oscillation, North Atlantic Oscillation, Tropical Atlantic Variability, Pacific Decadal Variability, Atlantic Multi-decadal Variability. Potential applications of the model are discussed, with emphasis on the possibility of generating sets of low-cost large-ensemble retrospective forecasts. We argue that the presented model is suitable to be employed in traditional and innovative model experiments that can play a significant role in future developments of seasonal-to-decadal climate prediction.
More details from the publisher
Details from ORA

Predictability of Indian Ocean precipitation and its North Atlantic teleconnections during early winter

npj Climate and Atmospheric Science Springer Nature 6:1 (2023) 17

Authors:

Muhammad Adnan Abid, Fred Kucharski, Franco Molteni, Mansour Almazroui
More details from the publisher
More details

Separating the Indian and Pacific Ocean Impacts on the Euro-Atlantic Response to ENSO and Its Transition from Early to Late Winter

Journal of Climate American Meteorological Society 34:4 (2021) 1531-1548

Authors:

Muhammad Adnan Abid, Fred Kucharski, Franco Molteni, In-Sik Kang, Adrian M Tompkins, Mansour Almazroui
More details from the publisher
More details

Decadal oscillation provides skillful multiyear predictions of Antarctic sea ice.

Nature communications 14:1 (2023) 8286

Authors:

Yusen Liu, Cheng Sun, Jianping Li, Fred Kucharski, Emanuele Di Lorenzo, Muhammad Adnan Abid, Xichen Li

Abstract:

Over the satellite era, Antarctic sea ice exhibited an overall long-term increasing trend, contrary to the Arctic reduction under global warming. However, the drastic decline of Antarctic sea ice in 2014-2018 raises questions about its interannual and decadal-scale variabilities, which are poorly understood and predicted. Here, we identify an Antarctic sea ice decadal oscillation, exhibiting a quasi-period of 8-16 years, that is anticorrelated with the Pacific Quasi-Decadal Oscillation (r = -0.90). By combining observations, Coupled Model Intercomparison Project historical simulations, and pacemaker climate model experiments, we find evidence that the synchrony between the sea ice decadal oscillation and Pacific Quasi-Decadal Oscillation is linked to atmospheric poleward-propagating Rossby wave trains excited by heating in the central tropical Pacific. These waves weaken the Amundsen Sea Low, melting sea ice due to enhanced shortwave radiation and warm advection. A Pacific Quasi-Decadal Oscillation-based regression model shows that this tropical-polar teleconnection carries multi-year predictability.
More details from the publisher
More details
More details

Driving mechanisms of Atlantic Niño under different vertical ocean resolutions

Copernicus Publications (2025)

Authors:

Marta Martín-Rey, Belén Rodríguez-Fonseca, Teresa Losada, Arthur Prigent, Irene Polo, Adnan Abi, Elsa Mohino, Lucía Montoya-Carramolino, Elena Calvo-Miguélez, Jia Wu, Diane Putrasahan
More details from the publisher

Pagination

  • Current page 1
  • Page 2
  • Page 3
  • Page 4
  • Page 5
  • Page 6
  • Page 7
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet