Modelling solar-like variability for the detection of Earth-like planetary transits: II. Performance of the three-spot modelling, harmonic function fitting,iterative nonlinear filtering, and sliding boxcar filtering
Astronomy and Astrophysics 495:2 (2009) 647-653
Abstract:
Aims. As an extension of a previous work, we present a comparison of four methods of filtering solar-like variability to increase the efficiency of detection of Earth-like planetary transits by means of box-shaped transit finder algorithms. Two of these filtering methods are the harmonic fitting method and the iterative nonlinear filter that, coupled respectively with the box least-square (BLS) and box maximum likelihood algorithms, demonstrated the best performance during the first detection blind test organised inside the CoRoT consortium. The third method, the 3-spot model, is a simplified physical model of Sun-like variability and the fourth is a simple sliding boxcar filter.Methods. We apply a Monte Carlo approach by simulating a large number of 150-day light curves (as for CoRoT long runs) for different planetary radii, orbital periods, epochs of the first transit, and standard deviations of the photon shot noise. Stellar variability is given by the total solar irradiance variations as observed close to the maximum of solar cycle 23. After filtering solar variability, transits are searched for by means of the BLS algorithm.Results. We find that the iterative nonlinear filter is the best method for filtering light curves of solar-like stars when a suitable window can be chosen. As the performance of this filter depends critically on the length of its window, we point out that the window must be as long as possible, according to the magnetic activity level of the star. We show an automatic method to choose the extension of the filter window from the power spectrum of the light curves.Conclusions. The iterative nonlinear filter, when used with a suitable choice of its window, has a better performance than more complicated and computationally intensive methods of fitting solar-like variability, like the 200-harmonic fitting or the 3-spot model. © 2009 ESO.Photospheric activity and rotation of the planet-hosting star CoRoT-Exo-4a
(2009)
An iterative filter to reconstruct planetary transit signals in the presence of stellar variability
Monthly Notices of the Royal Astronomical Society 397:3 (2009) 1591-1598
Abstract:
The detrending algorithms which are widely used to reduce the impact of stellar variability on space-based transit surveys are ill-suited for estimating the parameters of confirmed planets, as they unavoidably alter the transit signal. We present a post-detection detrending algorithm, which filters out signal on other time-scales than the period of the transit while preserving the transit signal. We compare the performance of this new filter to a well-established pre-detection detrending algorithm, by applying both to a set of 20 simulated light curves containing planetary transits, stellar variability and instrumental noise as expected for the CoRoT space mission, and performing analytic fits to the transits. Compared to the pre-detection benchmark, the new post-detection filter systematically yields significantly reduced errors (median reduction in relative error over our sample ∼40 per cent) on the planet-to-star-radius ratio, system scale and impact parameter. This is particularly important for active stars, where errors induced by variability can otherwise dominate the final error budget on the planet parameters. Aside from improving planet parameter estimates, the new filter preserves all signal at the orbital period of the planet, and thus could also be used to search for light reflected by the planet. © 2009 RAS.Magnetic activity in the photosphere of CoRoT-Exo-2a Active longitudes and short-term spot cycle in a young Sun-like star
Astronomy and Astrophysics 493:1 (2009) 193-200
Abstract:
Context. The space experiment CoRoT has recently detected transits by a hot Jupiter across the disc of an active G7V star (CoRoT-Exo-2a) that can be considered as a good proxy for the Sun at an age of approximately 0.5 Gyr.Aims. We present a spot modelling of the optical variability of the star during 142 days of uninterrupted observations performed by CoRoT with unprecedented photometric precision.Methods. We apply spot modelling approaches previously tested in the case of the Sun by modelling total solar irradiance variations, a good proxy for the optical flux variations of the Sun as a star. The best results in terms of mapping of the surface brightness inhomogeneities are obtained by means of maximum entropy regularized models. To model the light curve of CoRoT-Exo-2a, we take into account the photometric effects of both cool spots and solar-like faculae, adopting solar analogy.Results. Two active longitudes initially on opposite hemispheres are found on the photosphere of CoRoT-Exo-2a with a rotation period of 4.522 ± 0.024 days. Their separation changes by ≈80° during the time span of the observations. From this variation, a relative amplitude of the surface differential rotation lower than ∼ percent is estimated. Individual spots form within the active longitudes and show an angular velocity ∼ percent lower than that of the longitude pattern. The total spotted area shows a cyclic oscillation with a period of 28.9 ± 4.3 days, which is close to 10 times the synodic period of the planet as seen by the rotating active longitudes. We discuss the effects of solar-like faculae on our models, finding indications of a facular contribution to the optical flux variations of CoRoT-Exo-2a being significantly smaller than in the present Sun. Conclusions. The implications of such results for the internal rotation of CoRoT-Exo-2a are discussed, based on solar analogy. A possible magnetic star-planet interaction is suggested by the cyclic variation of the spotted area. Alternatively, the 28.9-d cycle may be related to Rossby-type waves propagating in the subphotospheric layers of the star. © 2008 ESO.The Monitor project: Rotation periods of low-mass stars in M50
Monthly Notices of the Royal Astronomical Society 392:4 (2009) 1456-1466