Influence of the carbazole moiety in self-assembling molecules as selective contacts in perovskite solar cells: interfacial charge transfer kinetics and solar-to-energy efficiency effects.
Nanoscale advances 5:23 (2023) 6542-6547
Abstract:
The use of self-assembled molecules (SAMs) as hole transport materials (HTMs) in p-i-n perovskite solar cells (iPSCs) has triggered widespread research due to their relatively easy synthetic methods, suitable energy level alignment with the perovskite material and the suppression of chemical defects. Herein, three new SAMs have been designed and synthesised based on a carbazole core moiety and modified functional groups through an efficient synthetic protocol. The SAMs have been used to understand the SAM/perovskite interface interactions and establish the relationship between the SAM molecular structure and the resulting performance of the perovskite-based devices. The best devices show efficiencies ranging from 18.9% to 17.5% under standard illumination conditions, which are very close to that of our benchmark EADR03, which has been recently commercialised. Our work aims to provide knowledge on the structure of the molecules versus device function relationship.Managing Excess Lead Iodide with Functionalized Oxo‐Graphene Nanosheets for Stable Perovskite Solar Cells
Angewandte Chemie Wiley 135:39 (2023)
Managing Excess Lead Iodide with Functionalized Oxo-Graphene Nanosheets for Stable Perovskite Solar Cells.
Angewandte Chemie (International ed. in English) 62:39 (2023) e202307395
Abstract:
Stability issues could prevent lead halide perovskite solar cells (PSCs) from commercialization despite it having a comparable power conversion efficiency (PCE) to silicon solar cells. Overcoming drawbacks affecting their long-term stability is gaining incremental importance. Excess lead iodide (PbI2 ) causes perovskite degradation, although it aids in crystal growth and defect passivation. Herein, we synthesized functionalized oxo-graphene nanosheets (Dec-oxoG NSs) to effectively manage the excess PbI2 . Dec-oxoG NSs provide anchoring sites to bind the excess PbI2 and passivate perovskite grain boundaries, thereby reducing charge recombination loss and significantly boosting the extraction of free electrons. The inclusion of Dec-oxoG NSs leads to a PCE of 23.7 % in inverted (p-i-n) PSCs. The devices retain 93.8 % of their initial efficiency after 1,000 hours of tracking at maximum power points under continuous one-sun illumination and exhibit high stability under thermal and ambient conditions.How Halide Alloying Influences the Optoelectronic Quality in Tin-Halide Perovskite Solar Absorbers.
ACS energy letters American Chemical Society (ACS) 8:9 (2023) 3876-3882
Abstract:
Halide alloying in tin-based perovskites allows for photostable bandgap tuning between 1.3 and 2.2 eV. Here, we elucidate how the band edge energetics and associated defect activity impact the optoelectronic properties of this class of materials. We find that by increasing the bromide:iodide ratio, a simultaneous destabilization of acceptor defects (tin vacancies and iodine interstitials) and stabilization of donor defects (iodine vacancies and tin interstitials) occurs, with strong changes arising for Br contents exceeding 50%. This translates into a decreased doping which is, however, accompanied by a higher density of nonradiative recombination channels. Films with high Br content show a high degree of disorder and trap state densities, with the best optoelectronic quality being found for Br contents of around 33%. These observations match the open circuit voltage trend of tin-based mixed halide perovskite solar cells, supporting the relevance of optoelectronic properties and chemistry of defects to optimize wide-bandgap tin perovskite devices.Defect Engineering to Achieve Photostable Wide Bandgap Metal Halide Perovskites.
ACS energy letters 8:6 (2023) 2801-2808