Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Juno Jupiter image

Professor Myles Allen CBE FRS

Statutory Professor

Research theme

  • Climate physics

Sub department

  • Atmospheric, Oceanic and Planetary Physics
Myles.Allen@physics.ox.ac.uk
Telephone: 01865 (2)72085,01865 (2)75895
Atmospheric Physics Clarendon Laboratory, room 109
  • About
  • Publications

The atmospheric response over the North Atlantic to decadal changes in sea surface temperature

Journal of Climate 12:8 PART 2 (1999) 2562-2584

Authors:

S Venzke, MR Allen, RT Sutton, DP Rowell

Abstract:

Decadal fluctuations in the climate of the North Atlantic-European region may be influenced by interactions between the atmosphere and the Atlantic Ocean, possibly as part of a coupled ocean-atmosphere mode of variability. For such a mode to exist, a consistent atmospheric response to fluctuations in North Atlantic sea surface temperatures (SST) is required. Furthermore, this response must provide feedbacks to the ocean. Whether a consistent response exists, and whether it yields the required feedbacks, are issues that remain controversial. Here, these issues are addressed using a novel approach to analyze an ensemble of six integrations of the Hadley Centre atmospheric general circulation model HadAM1, all forced with observed global SSTs and sea-ice extents for the period 1949-93. Characterizing the forced atmospheric response is complicated by the presence of internal variability. A generalization of principal component analysis is used to estimate the common forced response given the knowledge of internal variability provided by the ensemble. In the North Atlantic region a remote atmospheric response to El Nino-Southern Oscillation and a further response related to a tripole pattern in North Atlantic SST are identified. The latter, which is most consistent in spring, involves atmospheric circulation changes over the entire region, including a dipole pattern in sea level pressure often associated with the North Atlantic oscillation. Only over the tropical/subtropical Atlantic, however, does it account for a substantial fraction of the total variance. How the atmospheric response could feed back to affect the ocean, and in particular the SST tripole, is investigated. Several potential feedbacks are identified but it has to be concluded that, because of their marginal consistency between ensemble members, a coupled mode that relied on these feedbacks would be susceptible to disruption by internal atmospheric variability. Notwithstanding this conclusion, the authors' results suggest that predictions of SST evolution could be exploited to predict some aspects of atmospheric variability over the North Atlantic, including fluctuations in spring of the subtropical trade winds and the higher latitude westerlies.
More details from the publisher
More details

Causes of twentieth-century temperature change near the Earth's surface

NATURE 399:6736 (1999) 569-572

Authors:

SFB Tett, PA Stott, MR Allen, WJ Ingram, JFB Mitchell
More details from the publisher

Checking for model consistency in optimal fingerprinting

CLIMATE DYNAMICS 15:6 (1999) 419-434

Authors:

MR Allen, SFB Tett
More details from the publisher

Potential for improved ATSR dual-view SST retrieval

Geophysical Research Letters 25:17 (1998) 3363-3366

Authors:

MJ Murray, MR Allen, CJ Merchant, AR Harris

Abstract:

Recent validation studies have confirmed that the first along-track scanning radiometer (ATSR) can retrieve sea surface temperature (SST) to an accuracy of 0.3K even in the presence of heavy atmospheric aerosol. However, using the standard (pre-launch) retrieval, this accuracy is achieved only when data from all three thermal channels (3.7, 11 and 12 μm) are available; in the absence of 3.7 μm data, retrieved SSTs are subject to significant cold bias. As 3.7 μm data are useful only for nighttime observations, and ATSR's 3.7 μm channel failed in May 1992, only 11 and 12 μm data informed SST derivation for most of the 1991 - 1996 mission. We demonstrate the potential for improvement in this retrieval, based on comparison of observed brigthness temperatures with precise SSTs derived using 3.7 μm data. A reduction in global-mean cold bias from >0.6K to <0.1K is achieved, with standard deviation approximately halved. We also examine the treatment of optical pathlength variation around the ATSR swath.
More details from the publisher
More details

Correlations between altimetric sea surface height and radiometric sea surface temperature in the South Atlantic

Journal of Geophysical Research American Geophysical Union (AGU) 103:C4 (1998) 8073-8087

Authors:

Matthew S Jones, Myles Allen, Trevor Guymer, Mark Saunders
More details from the publisher

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 59
  • Page 60
  • Page 61
  • Page 62
  • Current page 63
  • Page 64
  • Page 65
  • Page 66
  • Page 67
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet