Bursts from Space: MeerKAT – the first citizen science project dedicated to commensal radio transients
Monthly Notices of the Royal Astronomical Society Oxford University Press 523:2 (2023) 2219-2235
Abstract:
The newest generation of radio telescopes is able to survey large areas with high sensitivity and cadence, producing data volumes that require new methods to better understand the transient sky. Here, we describe the results from the first citizen science project dedicated to commensal radio transients, using data from the MeerKAT telescope with weekly cadence. Bursts from Space: MeerKAT was launched late in 2021 and received ∼89 000 classifications from over 1000 volunteers in 3 months. Our volunteers discovered 142 new variable sources which, along with the known transients in our fields, allowed us to estimate that at least 2.1 per cent of radio sources are varying at 1.28 GHz at the sampled cadence and sensitivity, in line with previous work. We provide the full catalogue of these sources, the largest of candidate radio variables to date. Transient sources found with archival counterparts include a pulsar (B1845-01) and an OH maser star (OH 30.1–0.7), in addition to the recovery of known stellar flares and X-ray binary jets in our observations. Data from the MeerLICHT optical telescope, along with estimates of long time-scale variability induced by scintillation, imply that the majority of the new variables are active galactic nuclei. This tells us that citizen scientists can discover phenomena varying on time-scales from weeks to several years. The success both in terms of volunteer engagement and scientific merit warrants the continued development of the project, while we use the classifications from volunteers to develop machine learning techniques for finding transients.Serendipitous discovery of radio flaring behaviour from a nearby M dwarf with MeerKAT
Monthly Notices of the Royal Astronomical Society Oxford University Press 513:3 (2022) 3482-3492
Abstract:
We report on the detection of MKT J174641.0−321404, a new radio transient found in untargeted searches of wide-field MeerKAT radio images centred on the black hole X-ray binary H1743−322. MKT J174641.0−321404 is highly variable at 1.3 GHz and was detected three times during 11 observations of the field in late 2018, reaching a maximum flux density of 590 ± 60 μJy. We associate this radio transient with a high proper motion, M dwarf star SCR 1746−3214 12 pc away from the Sun. Multiwavelength observations of this M dwarf indicate flaring activity across the electromagnetic spectrum, consistent with emission expected from dMe stars, and providing upper limits on quiescent brightness in both the radio and X-ray regimes. TESS photometry reveals a rotational period for SCR 1746−3214 of 0.2292 ± 0.0025 days, which at its estimated radius makes the star a rapid rotator, comparable to other low mass systems. Dedicated spectroscopic follow up confirms the star as a mid-late spectral M dwarf with clear magnetic activity indicated by strong Hα emission. This transient’s serendipitous discovery by MeerKAT, along with multiwavelength characterisation, make it a prime demonstration of both the capabilities of the current generation of radio interferometers and the value of simultaneous observations by optical facilities such as MeerLICHT. Our results build upon the literature of of M dwarfs’ flaring behaviour, particularly relevant to the habitability of their planetary systems.A new method for short duration transient detection in radio images: Searching for transient sources in MeerKAT data of NGC 5068
ArXiv 2306.16383 (2023)
Search and identification of transient and variable radio sources using MeerKAT observations: a case study on the MAXI J1820+070 field
ArXiv 2203.16918 (2022)
Anomaly Detection and Radio-frequency Interference Classification with Unsupervised Learning in Narrowband Radio Technosignature Searches
The Astronomical Journal American Astronomical Society 169:4 (2025) 206