Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Black Hole

Lensing of space time around a black hole. At Oxford we study black holes observationally and theoretically on all size and time scales - it is some of our core work.

Credit: ALAIN RIAZUELO, IAP/UPMC/CNRS. CLICK HERE TO VIEW MORE IMAGES.

Dr Alex Andersson

Postdoctoral Fellow

Research theme

  • Astronomy and astrophysics

Sub department

  • Astrophysics

Research groups

  • Zooniverse
  • MeerKAT
  • Pulsars, transients and relativistic astrophysics
  • Rubin-LSST
  • The Square Kilometre Array (SKA)
  • Breakthrough Listen
alexander.andersson@physics.ox.ac.uk
  • About
  • Publications

Bursts from Space: MeerKAT - The first citizen science project dedicated to commensal radio transients

(2023)

Authors:

Alex Andersson, Chris Lintott, Rob Fender, Joe Bright, Francesco Carotenuto, Laura Driessen, Mathilde Espinasse, Kelebogile Gaseahalwe, Ian Heywood, Alexander J van der Horst, Sara Motta, Lauren Rhodes, Evangelia Tremou, David RA Williams, Patrick Woudt, Xian Zhang, Steven Bloemen, Paul Groot, Paul Vreeswijk, Stefano Giarratana, Payaswini Saikia, Jonas Andersson, Lizzeth Ruiz Arroyo, Loïc Baert, Matthew Baumann, Wilfried Domainko, Thorsten Eschweiler, Tim Forsythe, Sauro Gaudenzi, Rachel Ann Grenier, Davide Iannone, Karla Lahoz, Kyle J Melville, Marianne De Sousa Nascimento, Leticia Navarro, Sai Parthasarathi, Piilonen, Najma Rahman, Jeffrey Smith, B Stewart, Newton Temoke, Chloe Tworek, Isabelle Whittle
More details from the publisher
Details from ArXiV

Search and identification of transient and variable radio sources using MeerKAT observations: a case study on the MAXI J1820+070 field

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 517:2 (2022) 2894-2911

Authors:

A Rowlinson, J Meijn, J Bright, AJ van der Horst, S Chastain, S Fijma, R Fender, I Heywood, RAMJ Wijers, PA Woudt, A Andersson, GR Sivakoff, E Tremou, LN Driessen
More details from the publisher
More details

Serendipitous discovery of radio flaring behaviour from a nearby M dwarf with MeerKAT

(2022)

Authors:

Alex Andersson, Rob Fender, Chris Lintott, David Williams, Laura Driessen, Patrick Woudt, Alexander van der Horst, David Buckley, Sara Motta, Lauren Rhodes, Nora Eisner, Rachel Osten, Paul Vreeswijk, Steven Bloemen, Paul Groot
More details from the publisher
Details from ArXiV

Search and identification of transient and variable radio sources using MeerKAT observations: a case study on the MAXI J1820+070 field

(2022)

Authors:

A Rowlinson, J Meijn, J Bright, AJ van der Horst, S Chastain, S Fijma, R Fender, I Heywood, RAMJ Wijers, PA Woudt, A Andersson, GR Sivakoff, E Tremou, LN Driessen
More details from the publisher
Details from ArXiV

Finding radio transients

Abstract:

Modern radio telescopes are data-intensive machines, producing many TB of data every night. Amongst this deluge of data are transient and variable phenomena, whose study can shed new light on processes as varied as stellar dynamos and the accretion discs in supermassive black holes. In this work I demonstrate the applicability of different methods to the discovery of these astrophysical transients and variables coming from telescopes such as MeerKAT.

I first consider a standard approach to discovering transients by characterising their variability. By making use of even modest sampling with the high sensitivity and wide field of view of MeerKAT, I demonstrate how we are now able to uncover new transients almost by accident - if we exclude the vast amount of time spent planning, building and operating excellent telescopes, efficient pipelines and well- crafted observing proposals. In this work I found a stellar flare from a nearby M dwarf, which was then followed up and complemented by optical and X-ray photometry and spectroscopy, providing new insights on the system.

Next I built a citizen science platform in order to perform such transient searches at scale, making use of a wide range of data available in the MeerKAT archive. I detail the process of review and beta-testing that resulted in the final design of the Bursts from Space: MeerKAT project. Over 1000 volunteers took part, demonstrating a healthy appetite for further Zooniverse data releases. Volunteers discovered or recovered a wide range of phenomena, from flare stars and pulsars to scintillating AGN and transient OH maser emission. I was also able to use the known transients in our fields to understand some reasons why interesting sources may be missed and will fold this learning through to future iterations of the project. This is the first demonstration of volunteers finding radio transients in images.

Finally, I show how anomaly detection, an unsupervised machine learning approach, is a suitable tool for finding these variable phenomena at scale, as is required for modern astronomical surveys. I use three feature sets as applied to two anomaly detection techniques in the Astronomaly package and analyse anomaly detection performance by comparison with citizen science labels. By using transients found by citizen scientists as a ground truth I demonstrate that anomaly detection techniques can recall over half of the radio transients within 10% of the sample dataset. I find that the choice of feature set is crucial, especially when considering available resources for human inspection and follow-up. I find that active learning on ∼2% of the data improves recall by up to 10%, depending on the feature-model pair. The best performing feature-model pairs result in a factor of 5 times fewer sources requiring vetting by humans. This is the first effort to apply anomaly detection techniques to finding radio transients and shows great promise for application to other datasets, a real-time transient detection system and upcoming large surveys.

Details from ORA

Pagination

  • First page First
  • Previous page Prev
  • Page 1
  • Page 2
  • Page 3
  • Current page 4

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet